Generalization of theorems of Sz\'asz and Ruscheweyh on exact bounds for derivatives of analytic functions
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2009), pp. 84-89.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Omega$ and $\Pi$ be two domains in the extended complex plane equipped by the Poincaré metric. In this paper we obtain analogs of Schwarz–Pick type inequalities in the class $A(\Omega,\Pi)=\{f\colon\Omega\to\Pi\}$ of functions locally holomorphic in $\Omega$; for the domain $\Omega$ we consider the exterior of the unit disk and the upper half-plane. The obtained results generalize the well-known theorems of Szasz and Ruscheweyh about the exact estimates of derivatives of analytic functions defined on the disk $|z|1$.
Keywords: Schwarz–Pick type inequalities, analytic functions, Poincaré metric.
@article{IVM_2009_12_a10,
     author = {D. Kh. Giniyatova},
     title = {Generalization of theorems of {Sz\'asz} and {Ruscheweyh} on exact bounds for derivatives of analytic functions},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {84--89},
     publisher = {mathdoc},
     number = {12},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2009_12_a10/}
}
TY  - JOUR
AU  - D. Kh. Giniyatova
TI  - Generalization of theorems of Sz\'asz and Ruscheweyh on exact bounds for derivatives of analytic functions
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2009
SP  - 84
EP  - 89
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2009_12_a10/
LA  - ru
ID  - IVM_2009_12_a10
ER  - 
%0 Journal Article
%A D. Kh. Giniyatova
%T Generalization of theorems of Sz\'asz and Ruscheweyh on exact bounds for derivatives of analytic functions
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2009
%P 84-89
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2009_12_a10/
%G ru
%F IVM_2009_12_a10
D. Kh. Giniyatova. Generalization of theorems of Sz\'asz and Ruscheweyh on exact bounds for derivatives of analytic functions. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2009), pp. 84-89. http://geodesic.mathdoc.fr/item/IVM_2009_12_a10/

[1] Szász O., “Ungleichheitsbeziehungen für die Ableitungen einer Potenzreihe, die eine im Einheitskreise beschränkte Funktion darstellt”, Math. Z., 1920, no. 8, 303–309 | DOI | MR | Zbl

[2] Ruscheweyh St., Über einige Klassen in Einheitskreis holomorpher Funktionen, Ber. No 7, Math.-Stat. Sektion Forschungszentrum Graz, Graz, 1974, 12 pp.

[3] Anderson J. M., Dritschel M. A., Rovnyak J., “Schwarz–Pick inequalities for the Schur–Agler class on the polydisk and unit ball”, Comp. methods and func. theory, 8:2 (2008), 339–361 | MR | Zbl

[4] Avkhadiev F. G., Wirths K.-J., Schwarz–Pick type inequalities, Birkhäuser, Boston–Berlin–Bern, 2009, 156 pp. | MR | Zbl

[5] Avkhadiev F. G., Wirths K.-J., “Schwarz–Pick inequalities for derivatives of arbitrary order”, Constr. Approx., 19 (2003), 265–277 | DOI | MR | Zbl

[6] Avkhadiev F. G., Wirths K.-J., “The punishing factors for convex pairs are $2^{n-1}$”, Revista Math. Iberoamericana, 23 (2007), 847–860 | MR | Zbl

[7] Avkhadiev F. G., Wirths K.-J., “Estimates of the derivatives of meromorphic maps from convex domains into concave domains”, Comp. methods and func. theory, 8 (2008), 107–119 | MR | Zbl

[8] Li J.-L., “Estimates for derivatives of holomorphic functions in a hyperbolic domain”, J. Math. Anal. Appl., 329 (2007), 581–591 | DOI | MR | Zbl

[9] MacCluer B., Stroethoff K., Zhao R., “Schwarz–Pick estimates”, Complex Variables, 48 (2003), 711–730 | DOI | MR | Zbl

[10] Yamashita S., “Higher derivatives of holomorphic function with positive real part”, Hokkaido Math. J., 29 (2000), 23–36 | MR | Zbl

[11] Szász O., “Ungleichungen für die Koeffizienten einer Potenzreihe”, Math. Z., 1918, no. 1, 163–183 | DOI | MR | Zbl