Generalization of theorems of Sz\'asz and Ruscheweyh on exact bounds for derivatives of analytic functions
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2009), pp. 84-89
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\Omega$ and $\Pi$ be two domains in the extended complex plane equipped by the Poincaré metric. In this paper we obtain analogs of Schwarz–Pick type inequalities in the class $A(\Omega,\Pi)=\{f\colon\Omega\to\Pi\}$ of functions locally holomorphic in $\Omega$; for the domain $\Omega$ we consider the exterior of the unit disk and the upper half-plane. The obtained results generalize the well-known theorems of Szasz and Ruscheweyh about the exact estimates of derivatives of analytic functions defined on the disk $|z|1$.
Keywords:
Schwarz–Pick type inequalities, analytic functions, Poincaré metric.
@article{IVM_2009_12_a10,
author = {D. Kh. Giniyatova},
title = {Generalization of theorems of {Sz\'asz} and {Ruscheweyh} on exact bounds for derivatives of analytic functions},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {84--89},
publisher = {mathdoc},
number = {12},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2009_12_a10/}
}
TY - JOUR AU - D. Kh. Giniyatova TI - Generalization of theorems of Sz\'asz and Ruscheweyh on exact bounds for derivatives of analytic functions JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2009 SP - 84 EP - 89 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2009_12_a10/ LA - ru ID - IVM_2009_12_a10 ER -
%0 Journal Article %A D. Kh. Giniyatova %T Generalization of theorems of Sz\'asz and Ruscheweyh on exact bounds for derivatives of analytic functions %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2009 %P 84-89 %N 12 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2009_12_a10/ %G ru %F IVM_2009_12_a10
D. Kh. Giniyatova. Generalization of theorems of Sz\'asz and Ruscheweyh on exact bounds for derivatives of analytic functions. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2009), pp. 84-89. http://geodesic.mathdoc.fr/item/IVM_2009_12_a10/