An almost sure limit theorem for random sums of independent random variables in the domain of attraction of a~semistable law
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2009), pp. 85-88.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we prove an almost sure limit theorem for random sums of independent random variables in the domain of attraction of a $p$-semistable law and describe the limit law.
Keywords: almost sure limit theorem, $p$-semistable random variable, domain of attraction of a $p$-semistable law, random sum.
@article{IVM_2009_11_a10,
     author = {A. N. Chuprunov and L. P. Terekhova},
     title = {An almost sure limit theorem for random sums of independent random variables in the domain of attraction of a~semistable law},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {85--88},
     publisher = {mathdoc},
     number = {11},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2009_11_a10/}
}
TY  - JOUR
AU  - A. N. Chuprunov
AU  - L. P. Terekhova
TI  - An almost sure limit theorem for random sums of independent random variables in the domain of attraction of a~semistable law
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2009
SP  - 85
EP  - 88
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2009_11_a10/
LA  - ru
ID  - IVM_2009_11_a10
ER  - 
%0 Journal Article
%A A. N. Chuprunov
%A L. P. Terekhova
%T An almost sure limit theorem for random sums of independent random variables in the domain of attraction of a~semistable law
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2009
%P 85-88
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2009_11_a10/
%G ru
%F IVM_2009_11_a10
A. N. Chuprunov; L. P. Terekhova. An almost sure limit theorem for random sums of independent random variables in the domain of attraction of a~semistable law. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2009), pp. 85-88. http://geodesic.mathdoc.fr/item/IVM_2009_11_a10/

[1] Brosamler G., “An almost everywhere central limit theorem”, Math. Proc. Cambridge Phil. Soc., 104:3 (1988), 561–574 | DOI | MR | Zbl

[2] Schatte P., “On strong versions of the central limit theorem”, Math. Nachr., 137 (1988), 249–256 | DOI | MR | Zbl

[3] Berkes I., “On the almost sure central limit theorem and domains of attraction”, Probab. Theory Related Fields, 102 (1995), 1–18 | DOI | MR

[4] Ibragimov I. A., “O pochti vezde variantakh predelnykh teorem”, Dokl. RAN, 350:3 (1996), 301–303 | MR | Zbl

[5] Berkes I., Csáki E., “A universal result in almost sure central limit theory”, Stoch. Proc. Appl., 94:1 (2001), 105–134 | DOI | MR | Zbl

[6] Lévy P., Théorie de l'addition des variables aléatoires, Gauthier-Villars, Paris, 1937, 328 pp.

[7] Kruglov V. M., “Ob odnom rasshirenii klassa ustoichivykh raspredelenii”, Teoriya veroyatnostei i ee primeneniya, 17:4 (1972), 723–732 | MR | Zbl

[8] Csörgő S., Megyesi Z., “Merging to semistable laws”, Teoriya veroyatnostei i ee primeneniya, 47:1 (2002), 90–109 | MR | Zbl

[9] Csörgő S., “A probabilistic approach to domains of partial attraction”, Adv. Appl. Math., 11:3 (1990), 282–327 | DOI | MR | Zbl

[10] Grinevich I. V., Khokhlov Yu. S., “Oblasti prityazheniya poluustoichivykh zakonov”, Teoriya veroyatnostei i ee primeneniya, 40:2 (1995), 417–422 | MR | Zbl

[11] Gnedenko B. V., “K teorii oblastei prityazheniya ustoichivykh zakonov”, Uchen. zap. MGU, 30 (1939), 61–81 | MR | Zbl

[12] Doeblin W., “Sur l'ensemble de puissances d'une loi de probabilité”, Studia Math., 9:1 (1940), 71–96 | MR | Zbl

[13] Berkes I., Csáki E., Csörgő S., Megyesi Z., “Almost sure limit theorems for sums and maxima from the domain of geometric partial attraction of semistable laws”, Limit theorems in probability and statistics, V. I, eds. Berkes I., Csáki E., Csörgő M., János Bolyai Math. Soc., Budapest, 2002, 133–157 | MR | Zbl

[14] Fazekas I., Chuprunov A., “An almost sure functional limit theorem for the domain of geometrical partial attraction of semistable laws”, J. Theor. Probab., 20:2 (2007), 339–353 | DOI | MR | Zbl