Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2009_11_a10, author = {A. N. Chuprunov and L. P. Terekhova}, title = {An almost sure limit theorem for random sums of independent random variables in the domain of attraction of a~semistable law}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {85--88}, publisher = {mathdoc}, number = {11}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2009_11_a10/} }
TY - JOUR AU - A. N. Chuprunov AU - L. P. Terekhova TI - An almost sure limit theorem for random sums of independent random variables in the domain of attraction of a~semistable law JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2009 SP - 85 EP - 88 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2009_11_a10/ LA - ru ID - IVM_2009_11_a10 ER -
%0 Journal Article %A A. N. Chuprunov %A L. P. Terekhova %T An almost sure limit theorem for random sums of independent random variables in the domain of attraction of a~semistable law %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2009 %P 85-88 %N 11 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2009_11_a10/ %G ru %F IVM_2009_11_a10
A. N. Chuprunov; L. P. Terekhova. An almost sure limit theorem for random sums of independent random variables in the domain of attraction of a~semistable law. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2009), pp. 85-88. http://geodesic.mathdoc.fr/item/IVM_2009_11_a10/
[1] Brosamler G., “An almost everywhere central limit theorem”, Math. Proc. Cambridge Phil. Soc., 104:3 (1988), 561–574 | DOI | MR | Zbl
[2] Schatte P., “On strong versions of the central limit theorem”, Math. Nachr., 137 (1988), 249–256 | DOI | MR | Zbl
[3] Berkes I., “On the almost sure central limit theorem and domains of attraction”, Probab. Theory Related Fields, 102 (1995), 1–18 | DOI | MR
[4] Ibragimov I. A., “O pochti vezde variantakh predelnykh teorem”, Dokl. RAN, 350:3 (1996), 301–303 | MR | Zbl
[5] Berkes I., Csáki E., “A universal result in almost sure central limit theory”, Stoch. Proc. Appl., 94:1 (2001), 105–134 | DOI | MR | Zbl
[6] Lévy P., Théorie de l'addition des variables aléatoires, Gauthier-Villars, Paris, 1937, 328 pp.
[7] Kruglov V. M., “Ob odnom rasshirenii klassa ustoichivykh raspredelenii”, Teoriya veroyatnostei i ee primeneniya, 17:4 (1972), 723–732 | MR | Zbl
[8] Csörgő S., Megyesi Z., “Merging to semistable laws”, Teoriya veroyatnostei i ee primeneniya, 47:1 (2002), 90–109 | MR | Zbl
[9] Csörgő S., “A probabilistic approach to domains of partial attraction”, Adv. Appl. Math., 11:3 (1990), 282–327 | DOI | MR | Zbl
[10] Grinevich I. V., Khokhlov Yu. S., “Oblasti prityazheniya poluustoichivykh zakonov”, Teoriya veroyatnostei i ee primeneniya, 40:2 (1995), 417–422 | MR | Zbl
[11] Gnedenko B. V., “K teorii oblastei prityazheniya ustoichivykh zakonov”, Uchen. zap. MGU, 30 (1939), 61–81 | MR | Zbl
[12] Doeblin W., “Sur l'ensemble de puissances d'une loi de probabilité”, Studia Math., 9:1 (1940), 71–96 | MR | Zbl
[13] Berkes I., Csáki E., Csörgő S., Megyesi Z., “Almost sure limit theorems for sums and maxima from the domain of geometric partial attraction of semistable laws”, Limit theorems in probability and statistics, V. I, eds. Berkes I., Csáki E., Csörgő M., János Bolyai Math. Soc., Budapest, 2002, 133–157 | MR | Zbl
[14] Fazekas I., Chuprunov A., “An almost sure functional limit theorem for the domain of geometrical partial attraction of semistable laws”, J. Theor. Probab., 20:2 (2007), 339–353 | DOI | MR | Zbl