Polynomials with curved majorants on two segments
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2009), pp. 72-75.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we prove covering theorems for analytic functions related to polynomials that have curved majorants on two symmetric intervals. These theorems contain and complement some new and classic results for polynomials with restriction on one and two intervals.
Keywords: covering theorems, inequalities for polynomials, Chebyshev polynomials.
@article{IVM_2009_10_a8,
     author = {S. I. Kalmykov},
     title = {Polynomials with curved majorants on two segments},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {72--75},
     publisher = {mathdoc},
     number = {10},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2009_10_a8/}
}
TY  - JOUR
AU  - S. I. Kalmykov
TI  - Polynomials with curved majorants on two segments
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2009
SP  - 72
EP  - 75
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2009_10_a8/
LA  - ru
ID  - IVM_2009_10_a8
ER  - 
%0 Journal Article
%A S. I. Kalmykov
%T Polynomials with curved majorants on two segments
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2009
%P 72-75
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2009_10_a8/
%G ru
%F IVM_2009_10_a8
S. I. Kalmykov. Polynomials with curved majorants on two segments. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2009), pp. 72-75. http://geodesic.mathdoc.fr/item/IVM_2009_10_a8/

[1] Lachance M. A., “Bernstein and Markov inequalities for constrained polynomials”, Lect. Notes Math., 1045 (1984), 125–135 | DOI | MR

[2] Rahman Q. I., Schmeisser G., “Markoff type inequalities for curved majorants”, Numer. meth. of approx. theory, 1987, no. 8, 169–183 | MR | Zbl

[3] Dubinin V. N., Kalmykov S. I., “Printsip mazhoratsii dlya meromorfnykh funktsii”, Matem. sb., 198:12 (2007), 37–46 | MR | Zbl

[4] Kalmykov S. I., “Printsipy mazhoratsii i nekotorye neravenstva dlya polinomov i ratsionalnykh funktsii s predpisannymi polyusami”, Zap. nauchn. semin. POMI, 357, 2008, 143–157

[5] Levin A. L., Saff E. B., “Potential theoretic tools in polynomial and rational approximation”, Harmonic analysis and rational approximation, 327 (2006), 71–94 | DOI | MR | Zbl

[6] Dochev K., “O nekotorykh ekstremalnykh svoistvakh mnogochlenov”, DAN SSSR, 153:3 (1963), 519–521 | Zbl

[7] Borwein P., Erdelyi T., Polynomials and polynomial inequalities, Springer-Verlag, New York, 1995, 480 pp. | MR

[8] Dubinin V. N., “Konformnye otobrazheniya i neravenstva dlya algebraicheskikh polinomov”, Algebra i analiz, 13:5 (2001), 16–43 | MR | Zbl

[9] Sidorov Yu. V., Fedoryuk M. V., Shabunin M. I., Lektsii po teorii funktsii kompleksnogo peremennogo, Nauka, M., 1989, 478 pp. | MR | Zbl

[10] Stoilov S., Teoriya funktsii kompleksnogo peremennogo, T. 2, In. lit., M., 1962, 416 pp.

[11] Sege G., Ortogonalnye mnogochleny, GIFML, M., 1962, 500 pp.

[12] Geronimus Ya. L., Teoriya ortogonalnykh mnogochlenov, Nauka, M., 1950, 164 pp. | MR

[13] Mityuk I. P., Simmetrizatsionnye metody i ikh primenenie v geometricheskoi teorii funktsii. Vvedenie v simmetrizatsionnye metody, Kubanskii gos. un-t, Krasnodar, 1980, 90 pp.

[14] Akhiezer N. I., Elementy teorii ellipticheskikh funktsii, Nauka, M., 1970, 304 pp. | MR | Zbl