Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2009_10_a8, author = {S. I. Kalmykov}, title = {Polynomials with curved majorants on two segments}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {72--75}, publisher = {mathdoc}, number = {10}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2009_10_a8/} }
S. I. Kalmykov. Polynomials with curved majorants on two segments. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2009), pp. 72-75. http://geodesic.mathdoc.fr/item/IVM_2009_10_a8/
[1] Lachance M. A., “Bernstein and Markov inequalities for constrained polynomials”, Lect. Notes Math., 1045 (1984), 125–135 | DOI | MR
[2] Rahman Q. I., Schmeisser G., “Markoff type inequalities for curved majorants”, Numer. meth. of approx. theory, 1987, no. 8, 169–183 | MR | Zbl
[3] Dubinin V. N., Kalmykov S. I., “Printsip mazhoratsii dlya meromorfnykh funktsii”, Matem. sb., 198:12 (2007), 37–46 | MR | Zbl
[4] Kalmykov S. I., “Printsipy mazhoratsii i nekotorye neravenstva dlya polinomov i ratsionalnykh funktsii s predpisannymi polyusami”, Zap. nauchn. semin. POMI, 357, 2008, 143–157
[5] Levin A. L., Saff E. B., “Potential theoretic tools in polynomial and rational approximation”, Harmonic analysis and rational approximation, 327 (2006), 71–94 | DOI | MR | Zbl
[6] Dochev K., “O nekotorykh ekstremalnykh svoistvakh mnogochlenov”, DAN SSSR, 153:3 (1963), 519–521 | Zbl
[7] Borwein P., Erdelyi T., Polynomials and polynomial inequalities, Springer-Verlag, New York, 1995, 480 pp. | MR
[8] Dubinin V. N., “Konformnye otobrazheniya i neravenstva dlya algebraicheskikh polinomov”, Algebra i analiz, 13:5 (2001), 16–43 | MR | Zbl
[9] Sidorov Yu. V., Fedoryuk M. V., Shabunin M. I., Lektsii po teorii funktsii kompleksnogo peremennogo, Nauka, M., 1989, 478 pp. | MR | Zbl
[10] Stoilov S., Teoriya funktsii kompleksnogo peremennogo, T. 2, In. lit., M., 1962, 416 pp.
[11] Sege G., Ortogonalnye mnogochleny, GIFML, M., 1962, 500 pp.
[12] Geronimus Ya. L., Teoriya ortogonalnykh mnogochlenov, Nauka, M., 1950, 164 pp. | MR
[13] Mityuk I. P., Simmetrizatsionnye metody i ikh primenenie v geometricheskoi teorii funktsii. Vvedenie v simmetrizatsionnye metody, Kubanskii gos. un-t, Krasnodar, 1980, 90 pp.
[14] Akhiezer N. I., Elementy teorii ellipticheskikh funktsii, Nauka, M., 1970, 304 pp. | MR | Zbl