Representation of measurable functions by series with respect to Walsh subsystems
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2009), pp. 51-62

Voir la notice de l'article provenant de la source Math-Net.Ru

For every sequence $\{\omega(n)\}_{n\in\mathbb N}$ that tends to infinity we construct a “quasiquadratic” representation spectrum $\Lambda=\{n^2+o(\omega(n))\}_{n\in\mathbb N}$: for each almost everywhere finite measurable function $f(x)$ there exists a series in the form $\sum_{k\in\Lambda}a_kw_k(x)$ that converges almost everywhere to this function, where $\{w_k(x)\}_{k\in\mathbb N}$ is the Walsh system. We also find representation spectra in the form $\{n^l+o(n^l)\}_{n\in\mathbb N}$, where $l\in\{2^k\}_{k\in\mathbb N}$.
Keywords: Walsh system, orthogonal series, representation theorems, expansion spectrum.
@article{IVM_2009_10_a5,
     author = {M. A. Nalbandyan},
     title = {Representation of measurable functions by series with respect to {Walsh} subsystems},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {51--62},
     publisher = {mathdoc},
     number = {10},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2009_10_a5/}
}
TY  - JOUR
AU  - M. A. Nalbandyan
TI  - Representation of measurable functions by series with respect to Walsh subsystems
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2009
SP  - 51
EP  - 62
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2009_10_a5/
LA  - ru
ID  - IVM_2009_10_a5
ER  - 
%0 Journal Article
%A M. A. Nalbandyan
%T Representation of measurable functions by series with respect to Walsh subsystems
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2009
%P 51-62
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2009_10_a5/
%G ru
%F IVM_2009_10_a5
M. A. Nalbandyan. Representation of measurable functions by series with respect to Walsh subsystems. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2009), pp. 51-62. http://geodesic.mathdoc.fr/item/IVM_2009_10_a5/