Representation of measurable functions by series with respect to Walsh subsystems
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2009), pp. 51-62
Voir la notice de l'article provenant de la source Math-Net.Ru
For every sequence $\{\omega(n)\}_{n\in\mathbb N}$ that tends to infinity we construct a “quasiquadratic” representation spectrum $\Lambda=\{n^2+o(\omega(n))\}_{n\in\mathbb N}$: for each almost everywhere finite measurable function $f(x)$ there exists a series in the form $\sum_{k\in\Lambda}a_kw_k(x)$ that converges almost everywhere to this function, where $\{w_k(x)\}_{k\in\mathbb N}$ is the Walsh system.
We also find representation spectra in the form $\{n^l+o(n^l)\}_{n\in\mathbb N}$, where $l\in\{2^k\}_{k\in\mathbb N}$.
Keywords:
Walsh system, orthogonal series, representation theorems, expansion spectrum.
@article{IVM_2009_10_a5,
author = {M. A. Nalbandyan},
title = {Representation of measurable functions by series with respect to {Walsh} subsystems},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {51--62},
publisher = {mathdoc},
number = {10},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2009_10_a5/}
}
TY - JOUR AU - M. A. Nalbandyan TI - Representation of measurable functions by series with respect to Walsh subsystems JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2009 SP - 51 EP - 62 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2009_10_a5/ LA - ru ID - IVM_2009_10_a5 ER -
M. A. Nalbandyan. Representation of measurable functions by series with respect to Walsh subsystems. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2009), pp. 51-62. http://geodesic.mathdoc.fr/item/IVM_2009_10_a5/