Definition of a boundary in the local Charzy\'nski-Tammi conjecture
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2008), pp. 59-68.

Voir la notice de l'article provenant de la source Math-Net.Ru

According to the Charzynski–Tammi conjecture, the symmetrized Pick function is extremal in the problem on the estimate for the $n$th Taylor coefficient in the class of holomorphic univalent functions close to the identical one. In this paper we find the exact value of $M_4$ such that the symmetrized Pick function is locally extremal in the problem on the estimate for the 4th Taylor coefficient in the class of holomorphic normed univalent functions, whose module is bounded by $M_4$.
Keywords: Charzynski–Tammi conjecture, univalent function, bounded function, extremal problem, Pick function.
@article{IVM_2008_9_a6,
     author = {D. V. Prokhorov and V. G. Gordienko},
     title = {Definition of a boundary in the local {Charzy\'nski-Tammi} conjecture},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {59--68},
     publisher = {mathdoc},
     number = {9},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2008_9_a6/}
}
TY  - JOUR
AU  - D. V. Prokhorov
AU  - V. G. Gordienko
TI  - Definition of a boundary in the local Charzy\'nski-Tammi conjecture
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2008
SP  - 59
EP  - 68
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2008_9_a6/
LA  - ru
ID  - IVM_2008_9_a6
ER  - 
%0 Journal Article
%A D. V. Prokhorov
%A V. G. Gordienko
%T Definition of a boundary in the local Charzy\'nski-Tammi conjecture
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2008
%P 59-68
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2008_9_a6/
%G ru
%F IVM_2008_9_a6
D. V. Prokhorov; V. G. Gordienko. Definition of a boundary in the local Charzy\'nski-Tammi conjecture. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2008), pp. 59-68. http://geodesic.mathdoc.fr/item/IVM_2008_9_a6/

[1] Branges L., A proof of the Bieberbach conjecture, LOMI Preprints E-5-84, 1984, P. 1–21 | MR

[2] Branges L., “A proof of the Bieberbach conjecture”, Acta Math., 154:1–2 (1985), 137–152 | DOI | MR | Zbl

[3] Pick G., “Über die konforme Abbildung eines Kreises auf ein schlichtes und zugleich beschränktes Gebiet”, S.-B. Kaiserl. Akad. Wiss. Wien. Math.-Naturwiss. Kl. Abt. II a, 126 (1917), 247–263 | Zbl

[4] Schaeffer A. C., Spencer D. C., “The coefficients of schlicht functions, II”, Duke Math. J., 12 (1945), 107–125 | DOI | MR | Zbl

[5] Schiffer M., Tammi O., “On the fourth coefficient of bounded univalent functions”, Trans. Amer. Math. Soc., 119 (1965), 67–78 | DOI | MR | Zbl

[6] Siewierski L., “Sharp estimation of the coefficients of bounded univalent functions near the identity”, Bull. Acad. Polon. Sci., 16 (1968), 575–576 | MR | Zbl

[7] Siewierski L., “Sharp estimation of the coefficients of bounded univalent functions close to identity”, Dissertationes Math. (Rozprawy Mat.), 86 (1971), 1–153 | MR

[8] Schiffer M., Tammi O., “On bounded univalent functions which are close to identity”, Ann. Acad. Sci. Fenn. Ser. AI Math., 435 (1968), 3–26 | MR

[9] Prokhorov D. V., “Mnozhestva znachenii sistem funktsionalov v klassakh odnolistnykh funktsii”, Matem. sb., 181:12 (1990), 1659–1677

[10] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnogo upravleniya, Nauka, M., 1969, 308 pp.