Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2008_9_a6, author = {D. V. Prokhorov and V. G. Gordienko}, title = {Definition of a boundary in the local {Charzy\'nski-Tammi} conjecture}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {59--68}, publisher = {mathdoc}, number = {9}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2008_9_a6/} }
TY - JOUR AU - D. V. Prokhorov AU - V. G. Gordienko TI - Definition of a boundary in the local Charzy\'nski-Tammi conjecture JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2008 SP - 59 EP - 68 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2008_9_a6/ LA - ru ID - IVM_2008_9_a6 ER -
D. V. Prokhorov; V. G. Gordienko. Definition of a boundary in the local Charzy\'nski-Tammi conjecture. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2008), pp. 59-68. http://geodesic.mathdoc.fr/item/IVM_2008_9_a6/
[1] Branges L., A proof of the Bieberbach conjecture, LOMI Preprints E-5-84, 1984, P. 1–21 | MR
[2] Branges L., “A proof of the Bieberbach conjecture”, Acta Math., 154:1–2 (1985), 137–152 | DOI | MR | Zbl
[3] Pick G., “Über die konforme Abbildung eines Kreises auf ein schlichtes und zugleich beschränktes Gebiet”, S.-B. Kaiserl. Akad. Wiss. Wien. Math.-Naturwiss. Kl. Abt. II a, 126 (1917), 247–263 | Zbl
[4] Schaeffer A. C., Spencer D. C., “The coefficients of schlicht functions, II”, Duke Math. J., 12 (1945), 107–125 | DOI | MR | Zbl
[5] Schiffer M., Tammi O., “On the fourth coefficient of bounded univalent functions”, Trans. Amer. Math. Soc., 119 (1965), 67–78 | DOI | MR | Zbl
[6] Siewierski L., “Sharp estimation of the coefficients of bounded univalent functions near the identity”, Bull. Acad. Polon. Sci., 16 (1968), 575–576 | MR | Zbl
[7] Siewierski L., “Sharp estimation of the coefficients of bounded univalent functions close to identity”, Dissertationes Math. (Rozprawy Mat.), 86 (1971), 1–153 | MR
[8] Schiffer M., Tammi O., “On bounded univalent functions which are close to identity”, Ann. Acad. Sci. Fenn. Ser. AI Math., 435 (1968), 3–26 | MR
[9] Prokhorov D. V., “Mnozhestva znachenii sistem funktsionalov v klassakh odnolistnykh funktsii”, Matem. sb., 181:12 (1990), 1659–1677
[10] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnogo upravleniya, Nauka, M., 1969, 308 pp.