Equivalence of $K$-functionals and moduli of smoothness constructed by generalized Dunkl translations
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2008), pp. 3-15.

Voir la notice de l'article provenant de la source Math-Net.Ru

In a Hilbert space $L_{2,\alpha}:=L_2(\mathbb{R},|x|^{2\alpha+1}dx)$, $\alpha>-1/2$, we study the generalized Dunkl translations constructed by the Dunkl differential-difference operator. Using the generalized Dunkl translations, we define generalized modulus of smoothness in the space $L_{2,\alpha}$. On the base of the Dunkl operator we define Sobolev-type spaces and $K$-functionals. The main result of the paper is the proof of the equivalence theorem for a $K$-functional and a modulus of smoothness.
Keywords: Dunkl operator, generalized Dunkl translation, $K$-functional, modulus of smoothness.
@article{IVM_2008_8_a0,
     author = {S. S. Platonov and E. S. Belkina},
     title = {Equivalence of $K$-functionals and moduli of smoothness constructed by generalized {Dunkl} translations},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--15},
     publisher = {mathdoc},
     number = {8},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2008_8_a0/}
}
TY  - JOUR
AU  - S. S. Platonov
AU  - E. S. Belkina
TI  - Equivalence of $K$-functionals and moduli of smoothness constructed by generalized Dunkl translations
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2008
SP  - 3
EP  - 15
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2008_8_a0/
LA  - ru
ID  - IVM_2008_8_a0
ER  - 
%0 Journal Article
%A S. S. Platonov
%A E. S. Belkina
%T Equivalence of $K$-functionals and moduli of smoothness constructed by generalized Dunkl translations
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2008
%P 3-15
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2008_8_a0/
%G ru
%F IVM_2008_8_a0
S. S. Platonov; E. S. Belkina. Equivalence of $K$-functionals and moduli of smoothness constructed by generalized Dunkl translations. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2008), pp. 3-15. http://geodesic.mathdoc.fr/item/IVM_2008_8_a0/

[1] Butzer P. L., Behrens H., Semi-groups of operators and approximation, Springer, Berlin–Heidelberg–New York, 1967, 318 pp. | Zbl

[2] Terekhin A. P., “Ogranichennaya gruppa operatorov i nailuchshee priblizhenie”, Differents. uravneniya i vychislitelnaya matematika, no. 2, Izd-vo Saratovsk. un-ta, Saratov, 1975, 3–28

[3] Levitan B. M., Teoriya operatorov obobschennogo sdviga, Nauka, M., 1973, 312 pp. | MR | Zbl

[4] Löfstróm J., Peetre J., “Approximation theorems connected with generalized translations”, Math. Ann., 181 (1969), 255–268 | DOI | MR

[5] Potapov M. K., “O primenenii operatora obobschennogo sdviga v teorii priblizhenii”, Vestn. Moskovsk. un-ta. Ser. matem., mekhanika, 1998, no. 3, 38–48 | MR | Zbl

[6] Ditzian Z., Totik V., Moduli of smoothness, Springer-Verlag, New York etc., 1987, 228 pp.

[7] Platonov S. S., “Obobschennye sdvigi Besselya i nekotorye zadachi teorii priblizhenii funktsii v metrike $L_{2,\alpha}$, I”, Tr. Petrozavodsk. un-ta. Ser. Matematika, 2000, no. 7, 70–82 | MR

[8] Platonov S. S., “Obobschennye sdvigi Besselya i nekotorye zadachi teorii priblizhenii funktsii v metrike $L_{2,\alpha}$, II”, Tr. Petrozavodsk. un-ta. Ser. Matematika, 2001, no. 8, 1–17 | MR

[9] Feng Dai, “Some equivalence theorems with $K$-functionals”, J. Appr. Theory, 121 (2003), 143–157 | DOI | MR | Zbl

[10] Dunkl C. F., “Differential-difference operators associated to reflection groups”, Trans. Amer. Math. Soc., 311 (1989), 167–183 | DOI | MR | Zbl

[11] Rösler M., “Dunkl operators: theory and applications”, Lect. Notes in Math., 1817, 2002, 93–135

[12] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, T. II, Nauka, M., 1974, 396 pp.

[13] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, summ, ryadov i proizvedenii, Nauka, M., 1971, 1108 pp.

[14] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1976, 544 pp. | MR

[15] Salem N. B., Kallel S., “Mean-periodic functions associated with the Dunkl operators”, Integral Transforms Spec. Funct., 15:2 (2004), 155–179 | DOI | MR | Zbl

[16] Mourou M. A., Triméche K., “Transmutation operators and Paley–Wiener theorem associated with a singular differential-difference operator on the real line”, Anal. Appl., Singap., 1:1 (2003), 43–70 | DOI | MR | Zbl

[17] Vladimirov V. S., Obobschennye funktsii v matematicheskoi fizike, Nauka, M., 1979, 320 pp.

[18] Thangavelu S., Xu Yuan, “Convolution and maximal function for Dunkl transform”, J. Anal. Math., 97 (2005), 25–56 | DOI | MR

[19] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, T. 1, Mir, M., 1978, 358 pp. | MR