Bases of rearrangement-invariant spaces
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2008), pp. 48-54.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that if $E$ is a permutation-invariant space, then a boundedly complete basis exists in $E$, if and only if one of the following conditions holds: 1) $E$ is maximal and $E \ne L_1[0,1]$; 2) a certain (any) orthonormal system of functions from $L_\infty[0,1]$, possessing the properties of the Schauder basis for the space of continuous on $[0,1]$ functions with the norm $L_\infty$, represents a boundedly complete basis in $E$. As a corollary, we state the following assertion: any (certain) orthonormal system of functions from $L_\infty[0,1]$, possessing the properties of the Schauder basis for the space of continuous on $[0,1]$ functions with the norm $L_\infty$, represents a spanning basis in a separable permutation-invariant space $E$, if and only if the adjoint space $E^*$ is separable. We prove that in any separable permutation-invariant space $E$ the Haar system either forms an unconditional basis, or a strongly conditional one. The Haar system represents a strongly conditional basis in a separable permutation-invariant space, if and only if at least one of the Boyd indices of this space is trivial.
Mots-clés : permutation-invariant spaces
Keywords: the Haar system, boundedly complete bases, an unconditional basis, a strongly conditional basis, a spanning basis.
@article{IVM_2008_5_a5,
     author = {Kazaros Kazarian and E. M. Semenov and S. N. Uksusov},
     title = {Bases of rearrangement-invariant spaces},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {48--54},
     publisher = {mathdoc},
     number = {5},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2008_5_a5/}
}
TY  - JOUR
AU  - Kazaros Kazarian
AU  - E. M. Semenov
AU  - S. N. Uksusov
TI  - Bases of rearrangement-invariant spaces
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2008
SP  - 48
EP  - 54
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2008_5_a5/
LA  - ru
ID  - IVM_2008_5_a5
ER  - 
%0 Journal Article
%A Kazaros Kazarian
%A E. M. Semenov
%A S. N. Uksusov
%T Bases of rearrangement-invariant spaces
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2008
%P 48-54
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2008_5_a5/
%G ru
%F IVM_2008_5_a5
Kazaros Kazarian; E. M. Semenov; S. N. Uksusov. Bases of rearrangement-invariant spaces. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2008), pp. 48-54. http://geodesic.mathdoc.fr/item/IVM_2008_5_a5/

[1] Lindenstrauss J., Tzafriri L., Classical Banach spaces. II. Sequence spaces, Springer-Verlag, Berlin, 1979, 243 pp. | MR

[2] Krein S. G., Petunin Yu. S., Semenov E. M., Interpolyatsiya lineinykh operatorov, Nauka, M., 1978, 400 pp. | MR

[3] Kashin B. S., Saakyan A. A., Ortogonalnye ryady, Nauka, M., 1984, 496 pp. | MR | Zbl

[4] Novikov I., Semenov E., Haar series and linear operators, Kluver Acad. Publ., Dordrecht, 1997, 218 pp. | Zbl

[5] Uljanov P. L., “Haar series and related questions”, Alfred Haar Mem. Conf., 49, Budapest, 1985, 57–95 | MR

[6] Golubov B. I., “Ryady po sisteme Khaara”, Itogi nauki i tekhn. Matem. analiz, VINITI, M., 1971, 109–146 | MR

[7] Lindenstrauss J., Tzafriri L., Classical Banach spaces. I. Sequence spaces, Springer-Verlag, Berlin, 1977, 190 pp.

[8] Olevskii A. M., “Ryady Fure i funktsii Lebega”, UMN, 22:3 (1967), 237–239 | MR

[9] Kadets V. M., Popov M. M., “O bazisakh Shaudera, uslovnykh v kazhdom giperoktante”, Sib. matem. zhurn., 28:1 (1987), 115–118 | MR | Zbl

[10] Lelond O. V., Semenov E. M., Uksusov S. N., “Prostranstvo multiplikatorov Fure–Khaara”, Sib. matem. zhurn., 46:1 (2005), 130–138 | MR | Zbl