Bases of rearrangement-invariant spaces
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2008), pp. 48-54
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove that if $E$ is a permutation-invariant space, then a boundedly complete basis exists in $E$, if and only if one of the following conditions holds: 1) $E$ is maximal and $E \ne L_1[0,1]$; 2) a certain (any) orthonormal system of functions from $L_\infty[0,1]$, possessing the properties of the Schauder basis for the space of continuous on $[0,1]$ functions with the norm $L_\infty$, represents a boundedly complete basis in $E$. As a corollary, we state the following assertion: any (certain) orthonormal system of functions from $L_\infty[0,1]$, possessing the properties of the Schauder basis for the space of continuous on $[0,1]$ functions with the norm $L_\infty$, represents a spanning basis in a separable permutation-invariant space $E$, if and only if the adjoint space $E^*$ is separable. We prove that in any separable permutation-invariant space $E$ the Haar system either forms an unconditional basis, or a strongly conditional one. The Haar system represents a strongly conditional basis in a separable permutation-invariant space, if and only if at least one of the Boyd indices of this space is trivial.
Mots-clés :
permutation-invariant spaces
Keywords: the Haar system, boundedly complete bases, an unconditional basis, a strongly conditional basis, a spanning basis.
Keywords: the Haar system, boundedly complete bases, an unconditional basis, a strongly conditional basis, a spanning basis.
@article{IVM_2008_5_a5,
author = {Kazaros Kazarian and E. M. Semenov and S. N. Uksusov},
title = {Bases of rearrangement-invariant spaces},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {48--54},
publisher = {mathdoc},
number = {5},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2008_5_a5/}
}
Kazaros Kazarian; E. M. Semenov; S. N. Uksusov. Bases of rearrangement-invariant spaces. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2008), pp. 48-54. http://geodesic.mathdoc.fr/item/IVM_2008_5_a5/