Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2008_5_a2, author = {L. D. Gogoladze and V. Sh. Tsagareishvili}, title = {Absolute convergence of {Fourier--Haar} series of functions of two variables}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {14--25}, publisher = {mathdoc}, number = {5}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2008_5_a2/} }
TY - JOUR AU - L. D. Gogoladze AU - V. Sh. Tsagareishvili TI - Absolute convergence of Fourier--Haar series of functions of two variables JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2008 SP - 14 EP - 25 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2008_5_a2/ LA - ru ID - IVM_2008_5_a2 ER -
L. D. Gogoladze; V. Sh. Tsagareishvili. Absolute convergence of Fourier--Haar series of functions of two variables. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2008), pp. 14-25. http://geodesic.mathdoc.fr/item/IVM_2008_5_a2/
[1] Tsagareishvili V. Sh., “Absolyutnaya skhodimost kratnykh ryadov Fure funktsii s nepreryvnymi chastnymi proizvodnymi”, Soobsch. AN Gruz. SSR, 85:2 (1977), 273–275 | MR
[2] Aleksich G., Problemy skhodimosti ortogonalnykh ryadov, In. lit., M., 1963, 360 pp.
[3] Dzagnidze O. P., “Predstavlenie izmerimykh funktsii dvukh peremennykh dvoinymi ryadami”, Soobsch. AN Gruz. SSR, 34:2 (1964), 277–282 | MR | Zbl
[4] Ulyanov P. L., “O ryadakh po sisteme Khaara”, Matem. sb., 63:3 (1964), 356–391
[5] Golubov B. I., “O ryadakh Fure nepreryvnykh funktsii po sisteme Khaara”, Izv. AN SSSR. Ser. matem., 28:6 (1964), 1271–1296 | MR | Zbl
[6] Tsagareishvili V. Sh., “O strukture klassa $A(\varphi)$”, Matem. zametki, 80:2 (2006), 296–308 | MR | Zbl
[7] Bochkarev S. V., “Absolyutnaya skhodimost ryadov Fure po polnym ortonormirovannym sistemam”, UMN, 27:2 (1972), 53–76 | MR
[8] Bochkarev S. V., “O koeffitsientakh ryadov po sisteme Khaara”, Matem. sb., 80:1 (1969), 97–116 | Zbl