Absolute convergence of Fourier--Haar series of functions of two variables
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2008), pp. 14-25.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is well-known that if a one-dimensional function is continuously differentiable on $[0,1]$, then its Fourier–Haar series converges absolutely. On the other hand, if a function of two variables has continuous partial derivatives $f_x'$ and $f_y'$ on $T^2$, then its Fourier series does not necessarily absolutely converge with respect to a multiple Haar system (see [1]). In this paper we state sufficient conditions for the absolute convergence of the Fourier–Haar series for two-dimensional continuously differentiable functions
Keywords: absolute convergence, Fourier series, Haar system, functions of two variables, Rademacher system, convergence almost everywhere.
@article{IVM_2008_5_a2,
     author = {L. D. Gogoladze and V. Sh. Tsagareishvili},
     title = {Absolute convergence of {Fourier--Haar} series of functions of two variables},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {14--25},
     publisher = {mathdoc},
     number = {5},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2008_5_a2/}
}
TY  - JOUR
AU  - L. D. Gogoladze
AU  - V. Sh. Tsagareishvili
TI  - Absolute convergence of Fourier--Haar series of functions of two variables
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2008
SP  - 14
EP  - 25
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2008_5_a2/
LA  - ru
ID  - IVM_2008_5_a2
ER  - 
%0 Journal Article
%A L. D. Gogoladze
%A V. Sh. Tsagareishvili
%T Absolute convergence of Fourier--Haar series of functions of two variables
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2008
%P 14-25
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2008_5_a2/
%G ru
%F IVM_2008_5_a2
L. D. Gogoladze; V. Sh. Tsagareishvili. Absolute convergence of Fourier--Haar series of functions of two variables. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2008), pp. 14-25. http://geodesic.mathdoc.fr/item/IVM_2008_5_a2/

[1] Tsagareishvili V. Sh., “Absolyutnaya skhodimost kratnykh ryadov Fure funktsii s nepreryvnymi chastnymi proizvodnymi”, Soobsch. AN Gruz. SSR, 85:2 (1977), 273–275 | MR

[2] Aleksich G., Problemy skhodimosti ortogonalnykh ryadov, In. lit., M., 1963, 360 pp.

[3] Dzagnidze O. P., “Predstavlenie izmerimykh funktsii dvukh peremennykh dvoinymi ryadami”, Soobsch. AN Gruz. SSR, 34:2 (1964), 277–282 | MR | Zbl

[4] Ulyanov P. L., “O ryadakh po sisteme Khaara”, Matem. sb., 63:3 (1964), 356–391

[5] Golubov B. I., “O ryadakh Fure nepreryvnykh funktsii po sisteme Khaara”, Izv. AN SSSR. Ser. matem., 28:6 (1964), 1271–1296 | MR | Zbl

[6] Tsagareishvili V. Sh., “O strukture klassa $A(\varphi)$”, Matem. zametki, 80:2 (2006), 296–308 | MR | Zbl

[7] Bochkarev S. V., “Absolyutnaya skhodimost ryadov Fure po polnym ortonormirovannym sistemam”, UMN, 27:2 (1972), 53–76 | MR

[8] Bochkarev S. V., “O koeffitsientakh ryadov po sisteme Khaara”, Matem. sb., 80:1 (1969), 97–116 | Zbl