On the geometric nature of partial and conditional stability
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2008), pp. 76-85.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that certain problems which generalize the classical stability problem studied by A. M. Lyapunov admit a coordinate-free description. Namely, we mean problems on partial and conditional stability of solutions to vector functional differential equations, as well as a more general problem on the dependence of asymptotic properties of certain components of solutions on other ones. For equations in the form $$ x(t)-A\int^t_0x(s)d_sr(t,s)=f(t), $$ where the matrix $A=\mathrm{const}$ and $r:\{(t,s):0\le s\le t\}\to\mathbb C$, the indicated types of stability are defined by properties of minimal subspaces of the vector space which are invariant with respect to a given transformation and belong to a given subspace.
Keywords: functional differential equation, partial stability, conditional stability, invariant subspace.
@article{IVM_2008_3_a6,
     author = {K. M. Chudinov},
     title = {On the geometric nature of partial and conditional stability},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {76--85},
     publisher = {mathdoc},
     number = {3},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2008_3_a6/}
}
TY  - JOUR
AU  - K. M. Chudinov
TI  - On the geometric nature of partial and conditional stability
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2008
SP  - 76
EP  - 85
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2008_3_a6/
LA  - ru
ID  - IVM_2008_3_a6
ER  - 
%0 Journal Article
%A K. M. Chudinov
%T On the geometric nature of partial and conditional stability
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2008
%P 76-85
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2008_3_a6/
%G ru
%F IVM_2008_3_a6
K. M. Chudinov. On the geometric nature of partial and conditional stability. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2008), pp. 76-85. http://geodesic.mathdoc.fr/item/IVM_2008_3_a6/

[1] Azbelev N. V., Maksimov V. P., Rakhmatullina L. F., Vvedenie v teoriyu funktsionalno-differentsialnykh uravnenii, Nauka, M., 1991, 277 pp. | MR | Zbl

[2] Azbelev N. V., Simonov P. M., Ustoichivost uravnenii s obyknovennymi proizvodnymi, Izd-vo Permsk. un-ta, Perm, 2001, 229 pp. | MR

[3] Maksimov V. P., “O formule Koshi dlya funktsionalno-differentsialnogo uravneniya”, Differents. uravneniya, 13:4 (1977), 601–606 | MR | Zbl

[4] Smolin Yu. N., Nekotorye voprosy teorii funktsionalno-differentsialnykh modelei, Izd-vo Magnitogorsk. un-ta, Magnitogorsk, 2003, 341 pp. | MR

[5] Demidovich B. P., Lektsii po matematicheskoi teorii ustoichivosti, Izd-vo Moskovsk. un-ta, M., 1998, 480 pp. | MR

[6] Malygina V. V., “Ob ustoichivosti reshenii nekotorykh lineinykh differentsialnykh uravnenii s posledeistviem”, Izv. vuzov. Matematika, 1993, no. 5, 72–85 | MR | Zbl

[7] Kheil Dzh., Teoriya funktsionalno-differentsialnykh uravnenii, Mir, M., 1984, 421 pp. | MR

[8] Malygina V. V., “Nekotorye priznaki ustoichivosti uravnenii s zapazdyvayuschim argumentom”, Differents. uravneniya, 28:10 (1992), 1716–1723 | MR | Zbl

[9] Vorotnikov V. I., Rumyantsev V. V., Ustoichivost i upravlenie po chasti koordinat fazovogo vektora dinamicheskikh sistem: teoriya, metody i prilozheniya, Nauchnyi mir, M., 2001, 320 pp. | MR | Zbl

[10] Chudinov K. M., “O dvoistvennosti chastichnoi i uslovnoi ustoichivosti lineinykh funktsionalno-differentsialnykh uravnenii”, Izv. vuzov. Matematika, 2006, no. 5, 73–82 | MR

[11] Chudinov K. M., “Ob ustoichivosti po chasti peremennykh lineinykh avtonomnykh sistem s posledeistviem”, Izv. vuzov. Matematika, 2004, no. 6, 72–80 | MR | Zbl

[12] Gantmakher F. R., Teoriya matrits, 3-e izd., Nauka, M., 1967, 575 pp.

[13] Rekhlitskii Z. I., “Ob ustoichivosti reshenii nekotorykh lineinykh differentsialnykh uravnenii s zapazdyvayuschim argumentom v banakhovom prostranstve”, DAN SSSR, 111:1 (1956), 29–32

[14] Chudinov K. M., “Ob ustoichivosti po podprostranstvu i $S$-uslovnoi ustoichivosti reshenii periodicheskikh uravnenii”, Vestn. Permsk. un-ta. Matematika. Mekhanika. Informatika, no. 2, Perm, 2005, 139–146 | MR