Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2008_3_a5, author = {A. G. Chentsov}, title = {Extension of the abstract attainability problem using the {Stone} representation space}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {63--75}, publisher = {mathdoc}, number = {3}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2008_3_a5/} }
TY - JOUR AU - A. G. Chentsov TI - Extension of the abstract attainability problem using the Stone representation space JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2008 SP - 63 EP - 75 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2008_3_a5/ LA - ru ID - IVM_2008_3_a5 ER -
A. G. Chentsov. Extension of the abstract attainability problem using the Stone representation space. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2008), pp. 63-75. http://geodesic.mathdoc.fr/item/IVM_2008_3_a5/
[1] Neve Zh., Matematicheskie osnovy teorii veroyatnostei, Mir, M., 1969, 309 pp. | MR | Zbl
[2] Gelfand I. M., “Normirovannye koltsa”, Matem. sb., 9 (51) (1941), 3–24 | Zbl
[3] Gelfand I. M., Shilov G. E., “O nekotorykh sposobakh vvedeniya topologii v mnozhestvo maksimalnykh idealov normirovannogo koltsa”, Matem. sb., 9(51):1 (1941), 25–39 | MR | Zbl
[4] Chentsov A. G., “Nekotorye konstruktsii asimptoticheskogo analiza, svyazannye s kompaktifikatsiei Stouna–Chekha”, Sovremennaya matematika i ee prilozheniya, 26, Akademiya Nauk Gruzii. Institut kibernetiki, 2005, 119–150 | MR
[5] Chentsov A. G., “Obobschennye mnozhestva prityazheniya i priblizhennye resheniya, ikh formiruyuschie”, Tr. In-ta matem. i mekh. UrO RAN, 10, no. 2, Ekaterinburg, 2004, 178–196
[6] Chentsov A. G., “Nesekventsialnye priblizhennye resheniya v abstraktnykh zadachakh o dostizhimosti”, Tr. In-ta matem. i mekh. UrO RAN, 12, Ekaterinburg, 2006, 216–241
[7] Chentsov A. G., “Nesekventsialnye priblizhennye resheniya v abstraktnykh zadachakh upravleniya”, Tr. Mezhdunarodnogo seminara “Teoriya upravleniya i teoriya obobschennykh reshenii uravnenii Gamiltona–Yakobi”, 1, Izd-vo Uralsk. un-ta, Ekaterinburg, 2006, 48–60 | MR
[8] Chentsov A. G., “Priblizhennye resheniya v zadache ob asimptoticheskoi dostizhimosti”, Izv. vuzov. Matematika, 2005, no. 8, 63–73 | MR
[9] Varga Dzh., Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977, 624 pp. | MR
[10] Krasovskii N. N., Teoriya upravleniya dvizheniem, Nauka, M., 1968, 475 pp.
[11] Engelking R., Obschaya topologiya, Mir, M., 1986, 751 pp.
[12] Arkhangelskii A. V., “Kompaktnost”, Itogi nauki i tekhniki. Sovremen. probl. matem., 50, VINITI, M., 1989, 5–128
[13] Chentsov A. G., Asymptotic attainability, Kluwer Academic Publishers, Dordrecht–Boston–London, 1997, 322 pp. | Zbl
[14] Chentsov A. G., “Topologicheskie konstruktsii rasshirenii i predstavleniya mnozhestv prityazheniya”, Tr. In-ta matem. i mekh. UrO RAN, 6, Ekaterinburg, 2000, 247–276
[15] Danford N., Shvarts Dzh. T., Lineinye operatory. Obschaya teoriya, In. lit., M., 1962, 895 pp.
[16] Melentsov A. A., Baidosov V. A., Zmeev G. M., Elementy teorii mery i integrala, Izd-vo Uralsk. un-ta, Sverdlovsk, 1980, 100 pp.
[17] Chentsov A. G., “Extensions in the class of finitely additive measures”, Soochow J. Mathem., 30:1 (2004), 27–54 | MR | Zbl
[18] Chentsov A. G., Morina S. I., Extensions and relaxations, Kluwer Academic Publishers, Dordrecht–Boston–London, 2002, 408 pp. | Zbl
[19] Burbaki N., Obschaya topologiya, Nauka, M., 1968, 272 pp.
[20] Chentsov A. G., “Some properties of generalized attraction sets”, Funct. Different. Equations, 13:3–4 (2006), 381–415 | MR
[21] Chentsov A. G., “The nonsequential approximate solutions in problems of asymptotic analysis”, Soochow J. Mathem., 3:3 (2006), 441–475 | MR | Zbl
[22] Chentsov A. G., “Dvuznachnye mery na polualgebre mnozhestv i nekotorye ikh prilozheniya k beskonechnomernym zadacham matematicheskogo programmirovaniya”, Kibernetika, 1988, no. 6, 72–76 | MR | Zbl
[23] Chentsov A. G., “K voprosu o postroenii korrektnykh rasshirenii v klasse konechno-additivnykh mer”, Izv. vuzov. Matematika, 2002, no. 2, 58–80 | MR | Zbl
[24] Bogachev V. I., Osnovy teorii mery, T. 2, NITs “Regulyarnaya i khaoticheskaya dinamika”, Moskva–Izhevsk, 2003, 576 pp.