Extension of the abstract attainability problem using the Stone representation space
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2008), pp. 63-75.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider an attainability problem in a complete metric space on values of an objective operator $\mathbf h$. We assume that the latter admits a uniform approximation by mappings which are tier with respect to a given measurable space with an algebra of sets. Let asymptotic-type constraints be defined as a nonempty family of sets in this measurable space. We treat ultrafilters of the measurable space as generalized elements; we equip this space of ultrafilters with a topology of a zero-dimensional compact (the Stone representation space). On this base we construct a correct extension of the initial problem, realizing the set of attraction in the form of a continuous image of the compact of feasible generalized elements. Generalizing the objective operator, we use the limit with respect to ultrafilters of the measurable space. This provides the continuity of the generalized version of $\mathbf h$ understood as a mapping of the zero-dimensional compact into the topological space metrizable with a total metric.
Keywords: measurable space, extension, ultrafilter, tier mapping.
@article{IVM_2008_3_a5,
     author = {A. G. Chentsov},
     title = {Extension of the abstract attainability problem using the {Stone} representation space},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {63--75},
     publisher = {mathdoc},
     number = {3},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2008_3_a5/}
}
TY  - JOUR
AU  - A. G. Chentsov
TI  - Extension of the abstract attainability problem using the Stone representation space
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2008
SP  - 63
EP  - 75
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2008_3_a5/
LA  - ru
ID  - IVM_2008_3_a5
ER  - 
%0 Journal Article
%A A. G. Chentsov
%T Extension of the abstract attainability problem using the Stone representation space
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2008
%P 63-75
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2008_3_a5/
%G ru
%F IVM_2008_3_a5
A. G. Chentsov. Extension of the abstract attainability problem using the Stone representation space. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2008), pp. 63-75. http://geodesic.mathdoc.fr/item/IVM_2008_3_a5/

[1] Neve Zh., Matematicheskie osnovy teorii veroyatnostei, Mir, M., 1969, 309 pp. | MR | Zbl

[2] Gelfand I. M., “Normirovannye koltsa”, Matem. sb., 9 (51) (1941), 3–24 | Zbl

[3] Gelfand I. M., Shilov G. E., “O nekotorykh sposobakh vvedeniya topologii v mnozhestvo maksimalnykh idealov normirovannogo koltsa”, Matem. sb., 9(51):1 (1941), 25–39 | MR | Zbl

[4] Chentsov A. G., “Nekotorye konstruktsii asimptoticheskogo analiza, svyazannye s kompaktifikatsiei Stouna–Chekha”, Sovremennaya matematika i ee prilozheniya, 26, Akademiya Nauk Gruzii. Institut kibernetiki, 2005, 119–150 | MR

[5] Chentsov A. G., “Obobschennye mnozhestva prityazheniya i priblizhennye resheniya, ikh formiruyuschie”, Tr. In-ta matem. i mekh. UrO RAN, 10, no. 2, Ekaterinburg, 2004, 178–196

[6] Chentsov A. G., “Nesekventsialnye priblizhennye resheniya v abstraktnykh zadachakh o dostizhimosti”, Tr. In-ta matem. i mekh. UrO RAN, 12, Ekaterinburg, 2006, 216–241

[7] Chentsov A. G., “Nesekventsialnye priblizhennye resheniya v abstraktnykh zadachakh upravleniya”, Tr. Mezhdunarodnogo seminara “Teoriya upravleniya i teoriya obobschennykh reshenii uravnenii Gamiltona–Yakobi”, 1, Izd-vo Uralsk. un-ta, Ekaterinburg, 2006, 48–60 | MR

[8] Chentsov A. G., “Priblizhennye resheniya v zadache ob asimptoticheskoi dostizhimosti”, Izv. vuzov. Matematika, 2005, no. 8, 63–73 | MR

[9] Varga Dzh., Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977, 624 pp. | MR

[10] Krasovskii N. N., Teoriya upravleniya dvizheniem, Nauka, M., 1968, 475 pp.

[11] Engelking R., Obschaya topologiya, Mir, M., 1986, 751 pp.

[12] Arkhangelskii A. V., “Kompaktnost”, Itogi nauki i tekhniki. Sovremen. probl. matem., 50, VINITI, M., 1989, 5–128

[13] Chentsov A. G., Asymptotic attainability, Kluwer Academic Publishers, Dordrecht–Boston–London, 1997, 322 pp. | Zbl

[14] Chentsov A. G., “Topologicheskie konstruktsii rasshirenii i predstavleniya mnozhestv prityazheniya”, Tr. In-ta matem. i mekh. UrO RAN, 6, Ekaterinburg, 2000, 247–276

[15] Danford N., Shvarts Dzh. T., Lineinye operatory. Obschaya teoriya, In. lit., M., 1962, 895 pp.

[16] Melentsov A. A., Baidosov V. A., Zmeev G. M., Elementy teorii mery i integrala, Izd-vo Uralsk. un-ta, Sverdlovsk, 1980, 100 pp.

[17] Chentsov A. G., “Extensions in the class of finitely additive measures”, Soochow J. Mathem., 30:1 (2004), 27–54 | MR | Zbl

[18] Chentsov A. G., Morina S. I., Extensions and relaxations, Kluwer Academic Publishers, Dordrecht–Boston–London, 2002, 408 pp. | Zbl

[19] Burbaki N., Obschaya topologiya, Nauka, M., 1968, 272 pp.

[20] Chentsov A. G., “Some properties of generalized attraction sets”, Funct. Different. Equations, 13:3–4 (2006), 381–415 | MR

[21] Chentsov A. G., “The nonsequential approximate solutions in problems of asymptotic analysis”, Soochow J. Mathem., 3:3 (2006), 441–475 | MR | Zbl

[22] Chentsov A. G., “Dvuznachnye mery na polualgebre mnozhestv i nekotorye ikh prilozheniya k beskonechnomernym zadacham matematicheskogo programmirovaniya”, Kibernetika, 1988, no. 6, 72–76 | MR | Zbl

[23] Chentsov A. G., “K voprosu o postroenii korrektnykh rasshirenii v klasse konechno-additivnykh mer”, Izv. vuzov. Matematika, 2002, no. 2, 58–80 | MR | Zbl

[24] Bogachev V. I., Osnovy teorii mery, T. 2, NITs “Regulyarnaya i khaoticheskaya dinamika”, Moskva–Izhevsk, 2003, 576 pp.