Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2008_3_a1, author = {V. V. Malygina and A. Yu. Kulikov}, title = {On the stability of nonautonomous difference equations with several delays}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {18--26}, publisher = {mathdoc}, number = {3}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2008_3_a1/} }
TY - JOUR AU - V. V. Malygina AU - A. Yu. Kulikov TI - On the stability of nonautonomous difference equations with several delays JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2008 SP - 18 EP - 26 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2008_3_a1/ LA - ru ID - IVM_2008_3_a1 ER -
V. V. Malygina; A. Yu. Kulikov. On the stability of nonautonomous difference equations with several delays. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2008), pp. 18-26. http://geodesic.mathdoc.fr/item/IVM_2008_3_a1/
[1] Berezansky L., Braverman E., “On existence of positive solutions for linear difference equations wits several delays”, Adv. Dynam. Systems Appl., 1:1 (2006), 29–47 | MR | Zbl
[2] Elaydi S., “Periodicity and stability of linear Volterra difference systems”, J. Math. Anal. Appl., 181:2 (1994), 483–492 | DOI | MR | Zbl
[3] Azbelev N. V., Maksimov V. P., Rakhmatullina L. F., Vvedenie v teoriyu funktsionalno-differentsialnykh uravnenii, Nauka, M., 1991, 277 pp. | MR | Zbl
[4] Myshkis A. D., Lineinye differentsialnye uravneniya s zapazdyvayuschim argumentom, Nauka, M., 1972, 352 pp. | Zbl
[5] Malygina V. V., “Nekotorye priznaki ustoichivosti uravnenii s zapazdyvayuschim argumentom”, Differents. uravneniya, 28:10 (1992), 1716–1723 | MR | Zbl
[6] Yorke J. A., “Asymptotic stability for one dimensional differential-delay equations”, Different. Eq., 7:1 (1970), 189–202 | DOI | MR | Zbl
[7] Yoneyama T., “On the stability theorem for one dimensional delay-differential equations”, J. Math. Anal. Appl., 125:1 (1987), 161–173 | DOI | MR | Zbl
[8] Györi I., Hartung F., “Stability in delay perturbed differential and difference equation”, Fields Inst. Commun., 2001, no. 29, 181–194 | Zbl
[9] Zhang B. G., Tian C. J., Wong P. J. Y., “Global attractivity of difference equation with variable delay”, Dynam. Contin. Discrete Impuls. Systems, 6:3 (1999), 307–317 | MR | Zbl
[10] Berezansky L., Braverman E., “On Bohl–Perron type theorems for difference equations”, Func. Different. Eq., 11:1–2 (2004), 19–29 | MR
[11] Levin S. A., May R. M., “A note on delay-differential equations”, Theoret. Popul. Biol., 9:2 (1976), 178–187 | DOI | Zbl