On the stability of nonautonomous difference equations with several delays
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2008), pp. 18-26.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the possibility to construct efficient stability criteria for solutions to difference equations with variable coefficients. We prove that one can associate a difference equation with a certain functional differential equation, whose solution has the same asymptotic behavior. We adduce examples, demonstrating the essential character of conditions of the obtained theorems and the exactness of the constant 3/2 which defines the boundary of the stability domain.
Keywords: difference equation, fundamental solution, stability.
@article{IVM_2008_3_a1,
     author = {V. V. Malygina and A. Yu. Kulikov},
     title = {On the stability of nonautonomous difference equations with several delays},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {18--26},
     publisher = {mathdoc},
     number = {3},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2008_3_a1/}
}
TY  - JOUR
AU  - V. V. Malygina
AU  - A. Yu. Kulikov
TI  - On the stability of nonautonomous difference equations with several delays
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2008
SP  - 18
EP  - 26
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2008_3_a1/
LA  - ru
ID  - IVM_2008_3_a1
ER  - 
%0 Journal Article
%A V. V. Malygina
%A A. Yu. Kulikov
%T On the stability of nonautonomous difference equations with several delays
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2008
%P 18-26
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2008_3_a1/
%G ru
%F IVM_2008_3_a1
V. V. Malygina; A. Yu. Kulikov. On the stability of nonautonomous difference equations with several delays. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2008), pp. 18-26. http://geodesic.mathdoc.fr/item/IVM_2008_3_a1/

[1] Berezansky L., Braverman E., “On existence of positive solutions for linear difference equations wits several delays”, Adv. Dynam. Systems Appl., 1:1 (2006), 29–47 | MR | Zbl

[2] Elaydi S., “Periodicity and stability of linear Volterra difference systems”, J. Math. Anal. Appl., 181:2 (1994), 483–492 | DOI | MR | Zbl

[3] Azbelev N. V., Maksimov V. P., Rakhmatullina L. F., Vvedenie v teoriyu funktsionalno-differentsialnykh uravnenii, Nauka, M., 1991, 277 pp. | MR | Zbl

[4] Myshkis A. D., Lineinye differentsialnye uravneniya s zapazdyvayuschim argumentom, Nauka, M., 1972, 352 pp. | Zbl

[5] Malygina V. V., “Nekotorye priznaki ustoichivosti uravnenii s zapazdyvayuschim argumentom”, Differents. uravneniya, 28:10 (1992), 1716–1723 | MR | Zbl

[6] Yorke J. A., “Asymptotic stability for one dimensional differential-delay equations”, Different. Eq., 7:1 (1970), 189–202 | DOI | MR | Zbl

[7] Yoneyama T., “On the stability theorem for one dimensional delay-differential equations”, J. Math. Anal. Appl., 125:1 (1987), 161–173 | DOI | MR | Zbl

[8] Györi I., Hartung F., “Stability in delay perturbed differential and difference equation”, Fields Inst. Commun., 2001, no. 29, 181–194 | Zbl

[9] Zhang B. G., Tian C. J., Wong P. J. Y., “Global attractivity of difference equation with variable delay”, Dynam. Contin. Discrete Impuls. Systems, 6:3 (1999), 307–317 | MR | Zbl

[10] Berezansky L., Braverman E., “On Bohl–Perron type theorems for difference equations”, Func. Different. Eq., 11:1–2 (2004), 19–29 | MR

[11] Levin S. A., May R. M., “A note on delay-differential equations”, Theoret. Popul. Biol., 9:2 (1976), 178–187 | DOI | Zbl