On the stability of nonautonomous difference equations with several delays
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2008), pp. 18-26
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the possibility to construct efficient stability criteria for solutions to difference equations with variable coefficients. We prove that one can associate a difference equation with a certain functional differential equation, whose solution has the same asymptotic behavior. We adduce examples, demonstrating the essential character of conditions of the obtained theorems and the exactness of the constant 3/2 which defines the boundary of the stability domain.
Keywords:
difference equation, fundamental solution, stability.
@article{IVM_2008_3_a1,
author = {V. V. Malygina and A. Yu. Kulikov},
title = {On the stability of nonautonomous difference equations with several delays},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {18--26},
publisher = {mathdoc},
number = {3},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2008_3_a1/}
}
TY - JOUR AU - V. V. Malygina AU - A. Yu. Kulikov TI - On the stability of nonautonomous difference equations with several delays JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2008 SP - 18 EP - 26 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2008_3_a1/ LA - ru ID - IVM_2008_3_a1 ER -
V. V. Malygina; A. Yu. Kulikov. On the stability of nonautonomous difference equations with several delays. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2008), pp. 18-26. http://geodesic.mathdoc.fr/item/IVM_2008_3_a1/