Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2008_12_a5, author = {\'E. Yu. Lerner}, title = {Prime witnesses in the {Shor} algorithm and the {Miller--Rabin} algorithm}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {43--48}, publisher = {mathdoc}, number = {12}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2008_12_a5/} }
É. Yu. Lerner. Prime witnesses in the Shor algorithm and the Miller--Rabin algorithm. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2008), pp. 43-48. http://geodesic.mathdoc.fr/item/IVM_2008_12_a5/
[1] Shor P. W., “Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer”, SIAM J. Comput., 26:5 (1997), 1484–1509 ; http://lanl.arxiv.org/quant-ph/9508027 | DOI | MR | Zbl | MR
[2] Kitaev A. Yu., Shen A., Vyalyi M. N., Klassicheskie i kvantovye vychisleniya, MTsNMO, M., 1999, 192 pp. | MR
[3] Koblits N., Kurs teorii chisel i kriptografii, TVP, M., 2001, 254 pp. | MR
[4] Motwani R., Raghavan P., Randomized algorithms, Cambridge Univ. Press, 1995, 380 pp. | MR | Zbl
[5] Kormen T., Leizerson Ch., Rivest R., Algoritmy: postroenie i analiz, MTsNMO, M., 1999, 960 pp. | MR
[6] Monier L., “Evaluation and comparision of two efficient probabilistic primary testing algorithm”, Theor. Comput. Sci., 1980, no. 12, 97–108 | DOI | MR | Zbl
[7] Knut D., Iskusstvo programmirovaniya. T. 2. Poluchislennye algoritmy, Vilyams, M., 2003, 832 pp. | MR
[8] Aierlend K., Rouzen M., Klassicheskoe vvedenie v sovremennuyu teoriyu chisel, Mir, M., 1987, 415 pp. | MR
[9] Littlvud Dzh., Matematicheskaya smes, Nauka, M., 1978, 144 pp. | MR
[10] Alford W. R., Graville A., Pomerance C., “There are infinitely many Carmichael numbers”, Annals Math., 1994, no. 140, 703–722 | DOI | MR | Zbl