Ordered semigroups having the $P$-property
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2008), pp. 28-33.

Voir la notice de l'article provenant de la source Math-Net.Ru

The main results of the paper are the following. The ordered semigroups which have the $P$-property are decomposable into archimedean semigroups. Moreover, the ordered semigroups which have the $P$-property are decomposable into semigroups having the $P$-property. Conversely, if an ordered semigroup $S$ is a complete semilattice of semigroups which have the $P$-property, then $S$ itself has the $P$-property as well. An ordered semigroup is $CS$-indecomposable and has the $P$-property if and only if it is archimedean. If $S$ is an ordered semigroup, then the relation $N:=\{(a,b)\mid N(a)=N(b)\}$ (where $N(a)$ is the filter of $S$ generated by $a$ $(a\in S)$) is the least complete semilattice congruence on $S$ and the class $(a)_{N}$ is $CS$-indecomposable subsemigroup of $S$ for every $a\in S$. The concept of the $P_m$-property is introduced and a characterization of the $P_m$-property in terms of the $P$-property is given. Our methodology simplifies the proofs of the corresponding results of semigroups (without order)
Keywords: archimedean ordered semigroup, $P$-property, complete semilattice of semigroups of type $ T$, ideal, filter, $CS$-indecomposable ordered semigroup, $P_m$-property.
@article{IVM_2008_12_a3,
     author = {N. Kehayopulu and M. Tsingelis},
     title = {Ordered semigroups having the $P$-property},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {28--33},
     publisher = {mathdoc},
     number = {12},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2008_12_a3/}
}
TY  - JOUR
AU  - N. Kehayopulu
AU  - M. Tsingelis
TI  - Ordered semigroups having the $P$-property
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2008
SP  - 28
EP  - 33
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2008_12_a3/
LA  - ru
ID  - IVM_2008_12_a3
ER  - 
%0 Journal Article
%A N. Kehayopulu
%A M. Tsingelis
%T Ordered semigroups having the $P$-property
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2008
%P 28-33
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2008_12_a3/
%G ru
%F IVM_2008_12_a3
N. Kehayopulu; M. Tsingelis. Ordered semigroups having the $P$-property. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2008), pp. 28-33. http://geodesic.mathdoc.fr/item/IVM_2008_12_a3/

[1] Clifford A. H., Preston G. B., “The algebraic theory of semigroups”, Math. Surveys, 7, Amer. Math. Soc., Providence, Rhode Island, 1964

[2] Chrislock J. L., “On medial semigroups”, J. Algebra, 12 (1969), 1–9 | DOI | MR | Zbl

[3] Putcha M. S., “Semilattice decompositions of semigroups”, Semigroup Forum, 6:1 (1973), 12–34 | DOI | MR | Zbl

[4] Tamura T., “On Putcha's theorem concerning semilattice of archimedian semigroups”, Semigroup Forum, 4 (1972), 83–86 | DOI | MR | Zbl

[5] Kehayopulu N., “On weakly prime ideals of ordered semigroups”, Math. Japonica, 35:6 (1990), 1051–1056 | MR | Zbl

[6] Kehayopulu N., “On weakly commutative $poe$-semigroups”, Semigroup Forum, 34:3 (1987), 367–370 | MR | Zbl

[7] Kehayopulu N., “Remark on ordered semigroups”, Math. Japonica, 35:6 (1990), 1061–1063 | MR | Zbl

[8] Kekhaiopulu N., Tsingelis M., “Ob uporyadochennykh polugruppakh”, Razlozheniya i gomomorfnye otobrazheniya polugrupp, Mezvuzovskii sbornik nauchnykh trudov, Obrazovanie, SPb., 1992, 50–55

[9] Kekhaiopulu N., Tsingelis M., “Zamechanie o polureshetochnykh kongruentsiyakh v uporyadochennykh polugruppakh”, Izv. vuzov. Matematika, 2000, no. 2, 50–52 | MR

[10] Kehayopulu N., Kiriakuli P., Hanumantha Rao S., Lakshmi P., “On weakly commutative $poe$-semigroups”, Semigroup Forum, 41:3 (1990), 272–276 | MR

[11] Kehayopulu N., Tsingelis M., “On weakly commutative ordered semigroups”, Semigroup Forum, 56:1 (1998), 32–35 | DOI | MR | Zbl

[12] Kehayopulu N., Tsingelis M., “Semilattices of archimedian ordered semigroups”, Algebra Colloquium, 15:3 (2008), 527–540 | MR | Zbl

[13] Kehayopulu N., Tsingelis M., “$CS$-indecomposable ordered semigroups”, Zap. nauchn. semn. POMI, 343, 2007, 222–232 | MR