Singularly perturbed Dirichlet boundary value problem for a stationary system in the linear elasticity theory
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2008), pp. 7-16

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a singularly perturbed Dirichlet boundary value problem for an elliptic operator of the linear elasticity theory in a bounded domain with a small cavity. The main result is the proof of the theorem about the convergence of eigenelements of the perturbed boundary value problem to eigenelements of the corresponding limit boundary value problem, when the parameter $\varepsilon$ which defines the diameter of the small cavity tends to zero.
Keywords: operator, boundary value problem
Mots-clés : singular perturbation, eigenelements.
@article{IVM_2008_12_a1,
     author = {D. B. Davletov},
     title = {Singularly perturbed {Dirichlet} boundary value problem for a stationary system in the linear elasticity theory},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {7--16},
     publisher = {mathdoc},
     number = {12},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2008_12_a1/}
}
TY  - JOUR
AU  - D. B. Davletov
TI  - Singularly perturbed Dirichlet boundary value problem for a stationary system in the linear elasticity theory
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2008
SP  - 7
EP  - 16
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2008_12_a1/
LA  - ru
ID  - IVM_2008_12_a1
ER  - 
%0 Journal Article
%A D. B. Davletov
%T Singularly perturbed Dirichlet boundary value problem for a stationary system in the linear elasticity theory
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2008
%P 7-16
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2008_12_a1/
%G ru
%F IVM_2008_12_a1
D. B. Davletov. Singularly perturbed Dirichlet boundary value problem for a stationary system in the linear elasticity theory. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2008), pp. 7-16. http://geodesic.mathdoc.fr/item/IVM_2008_12_a1/