The global asymptotic stability and stabilization in nonlinear cascade systems with delay
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2008), pp. 68-79.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study certain sufficient conditions for the local and global uniform asymptotic stability, as well as the stabilizability of the equilibrium in cascade systems of delay differential equations. As distinct from the known results, the assertions presented in this paper are also valid for the cases, when the right-hand sides of equations are nonlinear and depend on time or arbitrarily depend on the historical data of the system. We prove that the use of auxiliary semi-definite functionals and functions with semi-definite derivatives taken by virtue of the system, essentially simplifies the statement of sufficient conditions for the asymptotic stability of a cascade. We adduce an example which illustrates the use of the obtained results. It demonstrates that the proposed procedure makes the study of the asymptotic stability and the construction of a stabilizing control easier in comparison with the traditional methods.
Keywords: delay differential equation, cascade system, stability, semi-definite Lyapunov functional.
@article{IVM_2008_11_a6,
     author = {N. O. Sedova},
     title = {The global asymptotic stability and stabilization in nonlinear cascade systems with delay},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {68--79},
     publisher = {mathdoc},
     number = {11},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2008_11_a6/}
}
TY  - JOUR
AU  - N. O. Sedova
TI  - The global asymptotic stability and stabilization in nonlinear cascade systems with delay
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2008
SP  - 68
EP  - 79
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2008_11_a6/
LA  - ru
ID  - IVM_2008_11_a6
ER  - 
%0 Journal Article
%A N. O. Sedova
%T The global asymptotic stability and stabilization in nonlinear cascade systems with delay
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2008
%P 68-79
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2008_11_a6/
%G ru
%F IVM_2008_11_a6
N. O. Sedova. The global asymptotic stability and stabilization in nonlinear cascade systems with delay. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2008), pp. 68-79. http://geodesic.mathdoc.fr/item/IVM_2008_11_a6/

[1] Jankovic M., Sepulchre R., Kokotovic P., “Global adaptive stabilization of cascade nonlinear systems”, Automatica, 33:2 (1997), 363–368 | DOI | MR

[2] Lozano R., Brogliato B., Landau I. D., “Passivity and global stabilization of cascaded nonlinear systems”, IEEE Trans. Automat. Control, 37:9 (1992), 1386–1389 | DOI | MR

[3] Mazenc F., Sepulchre R., Jankovic M., “Lyapunov functions for stable cascades and applications to stabilization”, IEEE Trans. Automat. Control, 44:9 (1999), 1795–1800 | DOI | MR | Zbl

[4] Panteley E., Lefeber E., Loria A., Nijmeijer H., “Exponential tracking control of a mobile car using a cascaded approach”, Proc. IFAC Workshop Motion Control, Grenoble, France, 1998, 221–226

[5] Panteley E., Loria A., “Global uniform asymptotic stability of cascaded non-autonomous nonlinear systems”, Proc. 4th European Control Conf. (Louvain-la-Neuve, Belgium, July 1997), Paper 259

[6] Panteley E., Loria A., “On global uniform asymptotic stability of nonlinear time-varying systems in cascade”, Syst. Contr. Letters, 33:2 (1998), 131–137 | DOI | MR | Zbl

[7] Michiels W., Sepulchre R., Roose D., “Robustness of nonlinear delay equations w.r.t. bounded input perturbations”, Proc. 14th Int. Symp. Math. Theory of Networks and Systems (MTNS2000), 1–5

[8] Michiels W., Sepulchre R., Roose D., Moreau L., “A perturbation approach to the stabilization of nonlinear cascade systems with time-delay”, Proc. 41st IEEE Conf. on Decision and Control (Las Vegas, Nevada, USA, Dec. 2002), 1898–1903

[9] Andreev A. S., Pavlikov S. V., “Neznakoopredelennye funktsionaly Lyapunova v zadache ob ustoichivosti funktsionalno-differentsialnykh uravnenii s konechnym zapazdyvaniem”, Mekhan. tverdogo tela, 2004, no. 34, 112–118

[10] Sedova N. O., “Vyrozhdennye funktsii v issledovanii asimptoticheskoi ustoichivosti reshenii funktsionalno-differentsialnykh uravnenii”, Matem. zametki, 78:3 (2005), 468–472 | MR | Zbl

[11] Kheil Dzh., Teoriya funktsionalno-differentsialnykh uravnenii, Mir, M., 1984, 421 pp.

[12] Kim A. V., $i$-gladkii analiz i funktsionalno-differentsialnye uravneniya, UrO RAN, Ekaterinburg, 1996, 234 pp.

[13] Krasovskii N. N., Nekotorye zadachi teorii ustoichivosti dvizheniya, Fizmatgiz, M., 1959, 211 pp.

[14] Razumikhin B. S., Ustoichivost ereditarnykh sistem, Nauka, M., 1988, 106 pp. | MR

[15] Krasovskii N. N., “Ob asimptoticheskoi ustoichivosti sistem s posledeistviem”, PMM, 20:4 (1956), 513–518 | MR

[16] Andreev A. S., “Ob ustoichivosti neavtonomnogo funktsionalno-differentsialnogo uravneniya”, Dokl. RAN, 356:2 (1997), 151–153 | MR | Zbl

[17] Seibert P., Suárez R., “Global stabilization of nonlinear cascaded systems”, Syst. Contr. Letters, 14 (1990), 347–352 | DOI | MR | Zbl

[18] Sontag E. D., “Remarks on stabilization and input-to-state stability”, IEEE Conference on Decision and Control (Tampa, Dec. 1989), IEEE Publ., 1989, 1376–1378 | MR

[19] Jakubiak J., Lefeber E., Tchon K., Nijmeijer H., “Two observer-based tracking algorithms for a unicycle mobile robot”, Int. J. Appl. Math. Comp. Sci., 12:4 (2002), 513–522 | MR | Zbl

[20] Boyd S., Sastry S., Adaptive control: stability, convergence, and robustness, Prentice Hall, USA, 1989, 377 pp.

[21] Andreev A. S., “Ob asimptoticheskoi ustoichivosti i neustoichivosti nulevogo resheniya neavtonomnoi sistemy”, PMM, 48:2 (1984), 225–232 | MR

[22] Khusainov D. Ya., Shatyrko A. V., Metod funktsii Lyapunova v issledovanii ustoichivosti differentsialno-funktsionalnykh sistem, Izd-vo Kievsk. un-ta, 1997, 236 pp. | MR | Zbl

[23] Moreau L., Michiels W., Aeyels D., Roose D., “Robustness of nonlinear delay equations w.r.t. bounded input perturbations: a trajectory based approach”, Math. Control, Signals, and Systems (MCSS), 15:4 (2002), 316–335 | DOI | MR | Zbl