Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2007_8_a1, author = {O. A. Zadvornov and M. M. Karchevskii and A. E. Fedotov}, title = {Application of mixed schemes of the finite element method to the solution of problems of nonlinear filtration theory}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {16--26}, publisher = {mathdoc}, number = {8}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2007_8_a1/} }
TY - JOUR AU - O. A. Zadvornov AU - M. M. Karchevskii AU - A. E. Fedotov TI - Application of mixed schemes of the finite element method to the solution of problems of nonlinear filtration theory JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2007 SP - 16 EP - 26 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2007_8_a1/ LA - ru ID - IVM_2007_8_a1 ER -
%0 Journal Article %A O. A. Zadvornov %A M. M. Karchevskii %A A. E. Fedotov %T Application of mixed schemes of the finite element method to the solution of problems of nonlinear filtration theory %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2007 %P 16-26 %N 8 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2007_8_a1/ %G ru %F IVM_2007_8_a1
O. A. Zadvornov; M. M. Karchevskii; A. E. Fedotov. Application of mixed schemes of the finite element method to the solution of problems of nonlinear filtration theory. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2007), pp. 16-26. http://geodesic.mathdoc.fr/item/IVM_2007_8_a1/
[1] Farhloul M., “A mixed finite element method for a nonlinear Dirichlet problem”, IMA. J. Num. Analysis, 18 (1998), 121–132 | DOI | MR | Zbl
[2] Farhloul M., Manouzi H., “On a mixed finite element method for the $p$-Laplasian”, Canadian Applied Mathematics Quathrly, 8, no. 1, Spring, 2000, 67–78 | MR
[3] Karchevskii M. M., Fedotov A. E., “Ob odnom variante smeshannogo metoda konechnykh elementov dlya kvazilineinykh ellipticheskikh uravnenii”, Issledovaniya po prikladnoi matem, no. 24, Izd-vo Kazansk. un-ta, Kazan, 2003, 74–80
[4] Karchevsky M. M., Fedotov A. E., “Error estimates and iterative procedure for mixed finite element solution of second-order quasi-linear elliptic problems”, Computat. Methods in Appl. Math., 4:4 (2004), 445–463 | MR | Zbl
[5] Karchevskii M. M., “Ob odnom podkhode k postroeniyu smeshannykh skhem MKE dlya kvazilineinykh ellipticheskikh uravnenii”, Materialy 5-go Vserossiiskogo seminara “Setochnye metody dlya kraevykh zadach i ikh prilozheniya” (Kazan, 17–21 sentyabrya 2004 g.), Izd-vo Kazansk. un-ta, Kazan, 2004, 108–111
[6] Karchevskii M. M., Fedotov A. E., “Smeshannyi metod konechnykh elementov dlya kvazilineinykh vyrozhdayuschikhsya ellipticheskikh uravnenii”, Kn. 3, Uchen. zap. Kazansk. un-ta, 147, 2005, 127–140 | Zbl
[7] Karchevskii M. M., Lyashko A. D., “O reshenii nekotorykh nelineinykh zadach teorii filtratsii”, Izv. vuzov. Matematika, 1975, no. 6, 73–81
[8] Zadvornov O. A., “Issledovanie nelineinoi statsionarnoi zadachi filtratsii pri nalichii tochechnogo istochnika”, Izv. vuzov. Matematika, 2005, no. 1, 58–63 | MR | Zbl
[9] Glushenkov V. D., “Ob odnom uravnenii nelineinoi teorii filtratsii”, Prikl. matem. v tekhniko-ekonomicheskikh zadachakh, Izd-vo Kazansk. un-ta, Kazan, 1976, 12–21
[10] Bernadiner G. I., Entov V. M., Gidrodinamicheskaya teoriya filtratsii anomalnykh zhidkostei, Nauka, M., 1975, 199 pp.
[11] Temam R., Uravneniya Nave-Stoksa. Teoriya i chislennyi analiz, Mir, M., 1981, 408 pp. | MR | Zbl
[12] Syarle F., Metod konechnykh elementov dlya ellipticheskikh zadach, Mir, M., 1980, 512 pp. | MR
[13] Brezzi F., Fortin M., Mixed and hybrid finite element methods, Springer series in Comp. Math., 1991, 350 pp. | MR
[14] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972, 588 pp. | MR
[15] Karchevskii M. M., Lapin A. V., “Issledovanie raznostnoi skhemy dlya nelineinoi statsionarnoi zadachi teorii filtratsii”, Issledov. po prikladnoi matem., no. 6, Izd-vo KGU, Kazan, 1979, 23–31 | MR
[16] Maslovskaya L. V., “Obobschennyi algoritm Kholesskogo dlya smeshannykh diskretnykh analogov ellipticheskikh kraevykh zadach”, Zhurn. vychisl. matem. i matem fiz., 29:1 (1989), 67–74 | MR
[17] Maslovskaya L. V., “Ob usloviyakh primenimosti obobschennogo algoritma Kholesskogo”, Zhurn. vychisl. matem. i matem fiz., 32:3 (1992), 339–347 | MR | Zbl
[18] Ikramov Kh. D., “Neskolko zamechanii po povodu obobschennogo algoritma Kholesskogo”, Zhurn. vychisl. matem. i matem fiz., 32:7 (1992), 1126–1130 | MR | Zbl
[19] Dyakonov E. G., Minimizatsiya vychislitelnoi raboty. Asimptoticheski optimalnye algoritmy dlya ellipticheskikh zadach, Nauka, M., 1989, 272 pp. | MR
[20] Chizhonkov E. V., “Metody relaksatsii dlya resheniya uravnenii s sedlovymi operatorami”, Iteratsionnye metody resheniya lineinykh i nelineinykh setochnykh zadach, Materialy Vserossiiskoi shkoly-konferentsii. T. 2, Tr. Matem. tsentra im. N. I. Lobachevskogo, 1999, 44–93
[21] Karchevskii M. M., Lyashko A. D., Raznostnye skhemy dlya nelineinykh uravnenii matematicheskoi fiziki, Izd-vo KGU, Kazan, 1976, 158 pp.