The structure of the Euler--Lagrange mapping
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2007), pp. 51-69.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2007_12_a3,
     author = {D. Krupka},
     title = {The structure of the {Euler--Lagrange} mapping},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {51--69},
     publisher = {mathdoc},
     number = {12},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2007_12_a3/}
}
TY  - JOUR
AU  - D. Krupka
TI  - The structure of the Euler--Lagrange mapping
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2007
SP  - 51
EP  - 69
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2007_12_a3/
LA  - ru
ID  - IVM_2007_12_a3
ER  - 
%0 Journal Article
%A D. Krupka
%T The structure of the Euler--Lagrange mapping
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2007
%P 51-69
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2007_12_a3/
%G ru
%F IVM_2007_12_a3
D. Krupka. The structure of the Euler--Lagrange mapping. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2007), pp. 51-69. http://geodesic.mathdoc.fr/item/IVM_2007_12_a3/

[1] Dedecker P., Tulczyjew W. M., “Spectral sequences and the inverse problem of the calculus of variations”, Differential Geometric Methods in Mathematical Physics, Internat. Colloq. (Aix-en-Provence, 1979), Lecture Notes in Math., 836, Springer, Berlin, 1980, 498–503 | MR

[2] García P. L., “The Poincaré–Cartan invariant in the calculus of variations”, Symposia Math., 14, 1974, 219–246 | MR | Zbl

[3] Goldschmidt H., Sternberg S., “The Hamilton–Cartan formalism in the calculus of variations”, Ann. Inst. H. Poincaré, 23 (1973), 203–267 | MR | Zbl

[4] Krupka D., “A geometric theory of ordinary first order variational problems in fibered manifolds. I: Critical sections”, J. Math. Anal. Appl., 49:1 (1975), 180–206 | DOI | MR | Zbl

[5] Krupka D., “A geometric theory of ordinary first order variational problems in fibered manifolds. II: Invariance”, J. Math. Anal. Appl., 49:2 (1975), 469–476 | DOI | MR | Zbl

[6] Krupka D., “Some geometric aspects of the calculus of variations in fibered manifolds”, Folia Fac. Sci. Nat. UJEP Brunensis, 14 (1973); E-print ArXiv:math-ph/0110005

[7] Trautman A., “Invariance of Lagrangian systems”, General relativity, Papers in honor of J. L. Synge, Clarendon Press, Oxford, 1972, 85–99 | MR

[8] Krupka D., Krupka M., “Jets and contact elements”, Proceedings of the Seminar on Differential Geometry, Mathematical Publications, ed. D. Krupka, Silesian Univ. in Opava, Opava, Czech Republic, 2000, 39–85 | MR | Zbl

[9] Saunders D., The geometry of jet bundles, Cambridge Univ. Press, 1989, 293 pp. | MR | Zbl

[10] Vinogradov A. M., Krasilschik I. S., Lychagin V. V., Introduction to the geometry of non-linear differential equations, Nauka, Moscow, 1986

[11] Krupka D., “Lepagean forms in higher order variational theory”, Modern Developments in Analytical Mechanics, Proc. IUTAM-ISIMM Sympos. (Turin, June 1982), Academy of Sciences of Turin, 1983, 197–238 | MR

[12] Anderson I., Duchamp T., “On the existence of global variational principles”, Am. J. Math., 102 (1980), 781–867 | DOI | MR

[13] Helmholtz H., “Über die physikalische Bedeutung des Prinzips der kleinsten Wirkung”, J. für die reine u. angewandte Math., 100 (1886), 137–166

[14] Sonin N. Ya., “On the definition of maximal and minimal properties”, Warsaw University Izvestiya, 1–2 (1886), 1–68

[15] Aldersley S. J., “Higher Euler operators and some of their applications”, J. Math. Phys., 20 (1979), 522–531 | DOI | MR | Zbl

[16] Tonti E., “Variational formulation of nonlinear differential equations, I”, Bull. Acad. Roy. Belg. C. Sci., 55:3 (1969), 137–165 | MR | Zbl

[17] Tonti E., “Variational formulation of nonlinear differential equations, II”, Bull. Acad. Roy. Belg. C. Sci., 55:4 (1969), 262–278 | MR | Zbl

[18] Vainberg M. M., Variational methods in the theory of nonlinear operators, GITL, Moscow, 1959

[19] Anderson I. M., “Introduction to the variational bicomplex”, Contemporary Mathematics, 132, 1992, 51–73 | MR | Zbl

[20] Krbek M., Musilová J., “Representation of the variational sequence by forms”, Acta Appl. Math., 88 (2005), 177–199 | DOI | MR | Zbl

[21] Krupka D., “On the local structure of the Euler–Lagrange mapping of the calculus of variations”, Proc. Conf. on Diff. Geom. Appl. (Nove Mesto na Morave, Sept. 1980), Charles Univ., Prague, 1981, 181–188 ; E-print ArXiv:math-ph/0203034 | MR

[22] Krupka D., “Variational sequences on finite order jet spaces”, Differential Geometry and its Applications, Proc. Conf. (Brno, Czechoslovakia, 1989), World Scientific, Singapore, 1990, 236–254 | MR | Zbl

[23] Takens F., “A global version of the inverse problem of the calculus of variations”, J. Different. Geom., 14 (1979), 543–562 | MR | Zbl

[24] Vitolo R., “Finite order Lagrangian bicomplexes”, Math. Proc. Cambridge Phil. Soc., 125 (1999), 321–333 | DOI | MR | Zbl

[25] Krupka D., “The total divergence equations”, Lobachevskii J. of Math., 23 (2006), 71–93 | MR | Zbl

[26] Krupka D., Musilová J., “Trivial lagrangians in field theory”, Diff. Geom. Appl., 9 (1998), 293–305 | DOI | MR | Zbl

[27] Brajercík J., Krupka D., “Variational principles for locally variational forms”, J. Math. Phys., 46:5 (2005), 1–15 | MR | Zbl

[28] Gotay M., “An exterior differential systems approach to the Cartan form”, Geométrie Symplectique et Physique Mathematique, eds. P. Donato et al., Birkhauser, Boston, 1991 | MR

[29] Kolar I., Vitolo R., “On the Helmholtz operator for Euler morphisms”, Math. Proc. Camb. Phil. Soc., 135 (2003), 277–290 | DOI | MR | Zbl

[30] Krupková O., The Geometry of ordinary variational equations, Lecture Notes in Math., 1678, Springer, Berlin, 1997 | MR | Zbl

[31] Krupka D., Stepanková O., “On the Hamilton form in second order calculus of variations”, Proc. of the Meeting “Geometry and Physics” (Florence, October 1982), Pitagora Editrice, Bologna, 1983, 85–101 | MR

[32] Krupková O., “Hamiltonian field theory”, J. Geom. Phys., 43 (2002), 93–132 | DOI | MR | Zbl

[33] Krupková O., “Lepagean $2$-forms in higher order Hamiltonian mechanics. I: Regularity”, Arch. Math. (Brno), 22 (1986), 97–120 | MR | Zbl