Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2007_12_a2, author = {{\CYRO}. {\CYRS}. Cortissoz}, title = {The {Ricci} flow on the two ball with a rotationally symmetric metric}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {33--50}, publisher = {mathdoc}, number = {12}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2007_12_a2/} }
О. С. Cortissoz. The Ricci flow on the two ball with a rotationally symmetric metric. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2007), pp. 33-50. http://geodesic.mathdoc.fr/item/IVM_2007_12_a2/
[1] Brendle S., “Curvature flows on surfaces with boundary”, Math. Ann., 324 (2002), 491–519 | DOI | MR | Zbl
[2] Perelman G., The entropy formula for the Ricci flow and geometric applications, , 2002 E-print arXiv:math.DG/0211159
[3] Hamilton R. S., “The Ricci flow on surfaces”, Math. and General Relativity, Contemporary Math., 71, 1988, 237–261 | MR
[4] Hamilton R. S., “Three manifolds with positive Ricci curvature”, J. Different. Geom., 17 (1982), 255–306 | MR | Zbl
[5] Hamilton R. S., Harmonic maps of manifolds with boundary, Lect. Notes in Math., 471, 1975, 168 pp. | MR | Zbl
[6] Hamilton R. S., “A compactness property for solutions of the Ricci flow”, Amer. J. Math., 117 (1995), 545–572 | DOI | MR | Zbl
[7] DiBenedetto E., Degenerate Parabolic Equations, Springer-Verlag, 1993, xvi+387 pp. | MR
[8] Hamilton R. S., “The formation of singularities in the Ricci flow”, Surveys in Different. Geom., 2 (1995), 7–136 | MR | Zbl
[9] Rothaus O., “Logarithmic Sobolev inequalities and the spectrum of Sturm–Liouville operators”, J. Funct. Anal., 39 (1908), 42–56 | DOI | MR
[10] Rothaus O., “Logarithmic Sobolev inequalities and the spectrum of Schrödinger operators”, J. Funct. Anal., 42 (1981), 110–120 | DOI | MR | Zbl
[11] Struwe M., “Curvature flows on surfaces”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5), I (2002), 247–274 | MR