The Ricci flow on the two ball with a rotationally symmetric metric
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2007), pp. 33-50.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2007_12_a2,
     author = {{\CYRO}. {\CYRS}. Cortissoz},
     title = {The {Ricci} flow on the two ball with a rotationally symmetric metric},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {33--50},
     publisher = {mathdoc},
     number = {12},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2007_12_a2/}
}
TY  - JOUR
AU  - О. С. Cortissoz
TI  - The Ricci flow on the two ball with a rotationally symmetric metric
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2007
SP  - 33
EP  - 50
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2007_12_a2/
LA  - ru
ID  - IVM_2007_12_a2
ER  - 
%0 Journal Article
%A О. С. Cortissoz
%T The Ricci flow on the two ball with a rotationally symmetric metric
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2007
%P 33-50
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2007_12_a2/
%G ru
%F IVM_2007_12_a2
О. С. Cortissoz. The Ricci flow on the two ball with a rotationally symmetric metric. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2007), pp. 33-50. http://geodesic.mathdoc.fr/item/IVM_2007_12_a2/

[1] Brendle S., “Curvature flows on surfaces with boundary”, Math. Ann., 324 (2002), 491–519 | DOI | MR | Zbl

[2] Perelman G., The entropy formula for the Ricci flow and geometric applications, , 2002 E-print arXiv:math.DG/0211159

[3] Hamilton R. S., “The Ricci flow on surfaces”, Math. and General Relativity, Contemporary Math., 71, 1988, 237–261 | MR

[4] Hamilton R. S., “Three manifolds with positive Ricci curvature”, J. Different. Geom., 17 (1982), 255–306 | MR | Zbl

[5] Hamilton R. S., Harmonic maps of manifolds with boundary, Lect. Notes in Math., 471, 1975, 168 pp. | MR | Zbl

[6] Hamilton R. S., “A compactness property for solutions of the Ricci flow”, Amer. J. Math., 117 (1995), 545–572 | DOI | MR | Zbl

[7] DiBenedetto E., Degenerate Parabolic Equations, Springer-Verlag, 1993, xvi+387 pp. | MR

[8] Hamilton R. S., “The formation of singularities in the Ricci flow”, Surveys in Different. Geom., 2 (1995), 7–136 | MR | Zbl

[9] Rothaus O., “Logarithmic Sobolev inequalities and the spectrum of Sturm–Liouville operators”, J. Funct. Anal., 39 (1908), 42–56 | DOI | MR

[10] Rothaus O., “Logarithmic Sobolev inequalities and the spectrum of Schrödinger operators”, J. Funct. Anal., 42 (1981), 110–120 | DOI | MR | Zbl

[11] Struwe M., “Curvature flows on surfaces”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5), I (2002), 247–274 | MR