Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2007_12_a0, author = {O. Krupkov\'a and G. E. Prince}, title = {Lepage forms, closed 2-forms and second-order ordinary differential equations}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {3--18}, publisher = {mathdoc}, number = {12}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2007_12_a0/} }
TY - JOUR AU - O. Krupková AU - G. E. Prince TI - Lepage forms, closed 2-forms and second-order ordinary differential equations JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2007 SP - 3 EP - 18 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2007_12_a0/ LA - ru ID - IVM_2007_12_a0 ER -
O. Krupková; G. E. Prince. Lepage forms, closed 2-forms and second-order ordinary differential equations. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2007), pp. 3-18. http://geodesic.mathdoc.fr/item/IVM_2007_12_a0/
[1] Krupka D., “Variational sequences on finite order jet spaces”, Proc. Conf. (Brno Czechoslovakia 1989), eds. J. Janyska, D. Krupka, World Scientific, Singapore, 1990, 236–254 | MR | Zbl
[2] Krupka D., “Variational sequences in mechanics”, Calc. Var., 5 (1997), 557–583 | DOI | MR | Zbl
[3] Krupková O., “Lepagean $2$-forms in higher order Hamiltonian mechanics. I: Regularity”, Arch. Math. (Brno), 22 (1986), 97–120 | MR | Zbl
[4] Krupková O., The Geometry of ordinary variational equations, Lecture Notes in Mathematics, 1678, Springer, Berlin, 1997 | MR | Zbl
[5] Krupková O., “Differential systems in higher-order mechanics”, Proceedings of the Seminar on Differential Geometry, Mathematical Publications, 2, ed. D. Krupka, Silesian University, Opava, 2000, 87–130 | MR | Zbl
[6] Krupková O., “The geometry of variational equations”, Global analysis and applied mathematics, AIP Conference Proceedings, 729, American Institute of Physics, 2004, 19–38 | MR | Zbl
[7] Krupková O., “Lepagean $2$-forms in higher order Hamiltonian mechanics. II: Inverse problem”, Arch. Math. (Brno), 23 (1987), 155–170 | MR | Zbl
[8] Crampin M., Prince G. E., Thompson G., “A geometric version of the Helmholtz conditions in time dependent Lagrangian dynamics”, J. Phys. A: Math. Gen., 17 (1984), 1437–1447 | DOI | MR | Zbl
[9] Krupka D., “Some geometric aspects of variational problems in fibered manifolds”, Folia Fac. Sci. Nat. Univ. Purk. Brunensis, Physica, 14, Brno, Czechoslovakia, 1973, 65 pp.; E-print ArXiv:math-ph/0110005
[10] Krupka D., “Lepagean forms in higher order variational theory”, Modern Developmens in Analytical Mechanics. I. Geometrical Dynamics, Proc. IUTAM-ISIMM Symposium (Torino, Italy, 1982), Accad. Sci. Torino, Torino, 1983, 197–238 | MR
[11] Krupka D., “Global variational theory in fibred spaces”, Handbook of Global Analysis, Elsevier, 2007, 755–839 | MR
[12] Saunders D. J., The Geometry of Jet Bundles, Cambridge Univ. Press, Cambridge, 1989, 293 pp. | MR | Zbl
[13] Takens F., “A global version of the inverse problem of the calculus of variations”, J. Diff. Geom., 14 (1979), 543–562 | MR | Zbl
[14] Anderson I., “Aspects of the inverse problem to the calculus of variations”, Arch. Math. (Brno), 24 (1988), 181–202 | MR | Zbl
[15] Anderson I., The variational bicomplex, Technical Report, Utah State University, 1989
[16] Krbek M., Musilová J., “Representation of the variational sequence”, Rep. Math. Phys., 51 (2003), 251–258 | DOI | MR | Zbl
[17] Krupka D., Šeděnková J., “Variational sequences and Lepagean forms”, Differential Geometry and its Applications, Proc. Conf. (Prague, 2004), eds. J. Bureš, O. Kowalski, D. Krupka, J. Slovák, Charles Univ., Prague, Czech Republic, 2005, 605–615 | MR
[18] Krupka D., “Global variational principles: Foundations and current problems”, Global Analysis and Applied Mathematics, AIP Conference Proceedings, 729, American Institute of Physics, 2004, 3–18 | MR | Zbl
[19] Helmholtz H., “Über der physikalische Bedeutung des Princips der kleinsten Wirkung”, J. Reine Angew. Math., 100 (1887), 137–166
[20] Krupková O., “Mechanical systems with non-holonomic constraints”, J. Math. Phys., 38 (1997), 5098–5126 | DOI | MR | Zbl
[21] Klapka L., “Euler–Lagrange expressions and closed two-forms in higher order mechanics”, Geometrical Methods in Physics, Proc. Conf. on Diff. Geom. and Appl. V. 2 (Nové Město na Moravě, Sept. 1983), ed. D. Krupka, J. E. Purkyně Univ., Brno, Czechoslovakia, 1984, 149–153 | MR
[22] Štěpánková O., The inverse problem of the calculus of variations in mechanics, Thesis, Charles University, Prague, 1984, 63 pp. (in Czech)
[23] Krupková O., “A geometric setting for higher-order Dirac–Bergmann theory of constraints”, J. Math. Phys., 35 (1994), 6557–6576 | DOI | MR | Zbl
[24] Krupková O., “Higher-order constrained systems on fibered manifolds: An exterior differential systems approach”, New Developments in Differential Geometry, Proc. Colloq. on Diff. Geom. (Debrecen, 1994), eds. L. Tamássy, J. Szenthe, Kluwer, Dordrecht, 1996, 255–278 | MR | Zbl
[25] Krupková O., Variational analysis on fibered manifolds over one-dimensional bases, Ph. D. Thesis, Silesian University, Opava et Charles University, Prague, 1992, 67 pp.
[26] Krupková O., Prince G., “Second order ordinary differential equations in jet bundles and the inverse problem of the calculus of variations”, Handbook on Global Analysis, Elsevier, 2007, 841–908 | MR
[27] Jerie M., Prince G. E., “Jacobi fields and linear connections for arbitrary second order ODE's”, J. Geom. Phys., 43 (2002), 351–370 | DOI | MR | Zbl
[28] Massa E., Pagani E., “Jet bundle geometry, dynamical connections, and the inverse problem of Lagrangian mechanics”, Ann. Inst. Henri Poincaré, Phys. Theor., 61 (1994), 17–62 | MR | Zbl
[29] Mestdag T., Sarlet W., “The Berwald-type connection associated to time-dependent second-order differential equations”, Houston J. Math., 27 (2001), 763–797 | MR | Zbl
[30] Douglas J., “Solution of the inverse problem of the calculus of variations”, Trans. Amer. Math. Soc., 50 (1941), 71–128 | DOI | MR
[31] Martínez E., Cariñena J. F., Sarlet W., “Derivations of differential forms along the tangent bundle projection”, Diff. Geom. Appl., 2 (1992), 17–43 | DOI | MR | Zbl
[32] Martínez E., Cariñena J. F., Sarlet W., “Derivations of differential forms along the tangent bundle projection, II”, Diff. Geom. Appl., 3 (1993), 1–29 | DOI | MR | Zbl
[33] Sarlet W., Vandecasteele A., Cantrijn F., Martínez E., “Derivations of forms along a map: the framework for time-dependent second-order equations”, Diff. Geom. Appl., 5 (1995), 171–203 | DOI | MR | Zbl
[34] Crampin M., Sarlet W., Martínez E., Byrnes G. B., Prince G. E., “Toward a geometrical understanding of Douglas's solution of the inverse problem in the calculus of variations”, Inverse Problems, 10 (1994), 245–260 | DOI | MR | Zbl
[35] Sarlet W., Thompson G., Prince G. E., “The inverse problem of the calculus of variations: the use of geometrical calculus in Douglas's analysis”, Trans. Amer. Math. Soc., 354 (2002), 2897–2919 | DOI | MR | Zbl
[36] Aldridge J. E., Aspects of the inverse problem in the calculus of variations, Ph. D. Thesis, La Trobe University, Australia, 2003
[37] Sarlet W., “The Helmholtz conditions revisited. A new approach to the inverse problem of Lagrangian dynamics”, J. Phys. A: Math. Gen., 15 (1982), 1503–1517 | DOI | MR | Zbl