Lifts of geometric objects to the Weil bundle $T^\mu M$ of a foliated manifold defined by an epimorphism $\mu$ of Weil algebras
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2007), pp. 76-89.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2007_10_a3,
     author = {L. {\CYRV}. Smolyakova and V. V. Shurygin},
     title = {Lifts of geometric objects to the {Weil} bundle $T^\mu M$  of a foliated manifold defined by an epimorphism $\mu$ of {Weil} algebras},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {76--89},
     publisher = {mathdoc},
     number = {10},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2007_10_a3/}
}
TY  - JOUR
AU  - L. В. Smolyakova
AU  - V. V. Shurygin
TI  - Lifts of geometric objects to the Weil bundle $T^\mu M$  of a foliated manifold defined by an epimorphism $\mu$ of Weil algebras
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2007
SP  - 76
EP  - 89
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2007_10_a3/
LA  - ru
ID  - IVM_2007_10_a3
ER  - 
%0 Journal Article
%A L. В. Smolyakova
%A V. V. Shurygin
%T Lifts of geometric objects to the Weil bundle $T^\mu M$  of a foliated manifold defined by an epimorphism $\mu$ of Weil algebras
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2007
%P 76-89
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2007_10_a3/
%G ru
%F IVM_2007_10_a3
L. В. Smolyakova; V. V. Shurygin. Lifts of geometric objects to the Weil bundle $T^\mu M$  of a foliated manifold defined by an epimorphism $\mu$ of Weil algebras. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2007), pp. 76-89. http://geodesic.mathdoc.fr/item/IVM_2007_10_a3/

[1] Morimoto A., “Prolongation of connections to bundles of infinitely near points”, J. Different. Geom., 11:4 (1976), 479–498 | MR | Zbl

[2] Shirokov A. P., “Geometriya kasatelnykh rassloenii i prostranstva nad algebrami”, Itogi nauki i tekhn. Probl. geometrii, 12, VINITI, M., 1981, 61–95 | MR

[3] Study E., Geometrie der Dynamen, Leipzig, 1902, 603 S.

[4] Vishnevskii V. V., Shirokov A. P., Shurygin V. V., Prostranstva nad algebrami, Izd-vo Kazansk. un-ta, Kazan, 1984, 264 pp. | MR

[5] Sultanov A. Ya., “Prodolzheniya tenzornykh polei i svyaznostei na rassloeniya Veilya”, Izv. vuzov. Matematika, 1999, no. 9, 64–72 | MR | Zbl

[6] Mikulski W. M., “Product preserving bundle functors on fibered manifolds”, Archiv. Math., 32 (1996), 307–316 | MR | Zbl

[7] Tomáš J. V., “Natural operators transforming projectable vector fields to product preserving bundles”, Rendiconti circ. mat. Palermo. Ser. II, 59 (1999), 181–187 | MR | Zbl

[8] Vishnevskii V. V., Panteleeva T. A., “Golomorfnye prodolzheniya ob'ektov v polukasatelnoe rassloenie vtorogo poryadka”, Izv. vuzov. Matematika, 1985, no. 9, 3–10 | MR

[9] Vishnevskii V. V., “Integriruemye affinornye struktury i ikh plyuralnye interpretatsii”, Itogi nauki i tekhn. Probl. geometrii. Sovremen. matem. i ee prilozh. Tematicheskie obzory, 73, VINITI, M., 2002, 5–64

[10] Kolář I., Michor P. W., Slovák J., Natural operations in differential geometry, Springer, 1993, 434 pp. | MR

[11] Shurygin V. V., Smolyakova L. B., “An analog of the Vaisman–Molino cohomology for manifolds modelled on some types of modules over Weil algebras and its application”, Lobachevskii J. of Math., 9 (2001), 55–75 | MR | Zbl

[12] Molino P., Riemannian foliations, Birkhäuser, 1988, 339 pp. | MR | Zbl

[13] Shurygin V. V., “O stroenii polnykh mnogoobrazii nad algebrami Veilya”, Izv. vuzov. Matematika, 2003, no. 11, 88–97 | MR | Zbl

[14] Shurygin V. V., “Primenenie teorii mnogoobrazii nad algebrami v transversalnoi geometrii sloenii”, Pamyati Lobachevskogo posvyaschaetsya, no. 2, Izd-vo Kazansk. un-ta, Kazan, 1992, 119–140 | MR