Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2007_10_a3, author = {L. {\CYRV}. Smolyakova and V. V. Shurygin}, title = {Lifts of geometric objects to the {Weil} bundle $T^\mu M$ of a foliated manifold defined by an epimorphism $\mu$ of {Weil} algebras}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {76--89}, publisher = {mathdoc}, number = {10}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2007_10_a3/} }
TY - JOUR AU - L. В. Smolyakova AU - V. V. Shurygin TI - Lifts of geometric objects to the Weil bundle $T^\mu M$ of a foliated manifold defined by an epimorphism $\mu$ of Weil algebras JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2007 SP - 76 EP - 89 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2007_10_a3/ LA - ru ID - IVM_2007_10_a3 ER -
%0 Journal Article %A L. В. Smolyakova %A V. V. Shurygin %T Lifts of geometric objects to the Weil bundle $T^\mu M$ of a foliated manifold defined by an epimorphism $\mu$ of Weil algebras %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2007 %P 76-89 %N 10 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2007_10_a3/ %G ru %F IVM_2007_10_a3
L. В. Smolyakova; V. V. Shurygin. Lifts of geometric objects to the Weil bundle $T^\mu M$ of a foliated manifold defined by an epimorphism $\mu$ of Weil algebras. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2007), pp. 76-89. http://geodesic.mathdoc.fr/item/IVM_2007_10_a3/
[1] Morimoto A., “Prolongation of connections to bundles of infinitely near points”, J. Different. Geom., 11:4 (1976), 479–498 | MR | Zbl
[2] Shirokov A. P., “Geometriya kasatelnykh rassloenii i prostranstva nad algebrami”, Itogi nauki i tekhn. Probl. geometrii, 12, VINITI, M., 1981, 61–95 | MR
[3] Study E., Geometrie der Dynamen, Leipzig, 1902, 603 S.
[4] Vishnevskii V. V., Shirokov A. P., Shurygin V. V., Prostranstva nad algebrami, Izd-vo Kazansk. un-ta, Kazan, 1984, 264 pp. | MR
[5] Sultanov A. Ya., “Prodolzheniya tenzornykh polei i svyaznostei na rassloeniya Veilya”, Izv. vuzov. Matematika, 1999, no. 9, 64–72 | MR | Zbl
[6] Mikulski W. M., “Product preserving bundle functors on fibered manifolds”, Archiv. Math., 32 (1996), 307–316 | MR | Zbl
[7] Tomáš J. V., “Natural operators transforming projectable vector fields to product preserving bundles”, Rendiconti circ. mat. Palermo. Ser. II, 59 (1999), 181–187 | MR | Zbl
[8] Vishnevskii V. V., Panteleeva T. A., “Golomorfnye prodolzheniya ob'ektov v polukasatelnoe rassloenie vtorogo poryadka”, Izv. vuzov. Matematika, 1985, no. 9, 3–10 | MR
[9] Vishnevskii V. V., “Integriruemye affinornye struktury i ikh plyuralnye interpretatsii”, Itogi nauki i tekhn. Probl. geometrii. Sovremen. matem. i ee prilozh. Tematicheskie obzory, 73, VINITI, M., 2002, 5–64
[10] Kolář I., Michor P. W., Slovák J., Natural operations in differential geometry, Springer, 1993, 434 pp. | MR
[11] Shurygin V. V., Smolyakova L. B., “An analog of the Vaisman–Molino cohomology for manifolds modelled on some types of modules over Weil algebras and its application”, Lobachevskii J. of Math., 9 (2001), 55–75 | MR | Zbl
[12] Molino P., Riemannian foliations, Birkhäuser, 1988, 339 pp. | MR | Zbl
[13] Shurygin V. V., “O stroenii polnykh mnogoobrazii nad algebrami Veilya”, Izv. vuzov. Matematika, 2003, no. 11, 88–97 | MR | Zbl
[14] Shurygin V. V., “Primenenie teorii mnogoobrazii nad algebrami v transversalnoi geometrii sloenii”, Pamyati Lobachevskogo posvyaschaetsya, no. 2, Izd-vo Kazansk. un-ta, Kazan, 1992, 119–140 | MR