The Parsons model in the case of a bifurcation point with two-dimensional branching
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2006), pp. 62-75.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2006_3_a8,
     author = {L. D. \`Eskin},
     title = {The {Parsons} model in the case of a bifurcation point with two-dimensional branching},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {62--75},
     publisher = {mathdoc},
     number = {3},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2006_3_a8/}
}
TY  - JOUR
AU  - L. D. Èskin
TI  - The Parsons model in the case of a bifurcation point with two-dimensional branching
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2006
SP  - 62
EP  - 75
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2006_3_a8/
LA  - ru
ID  - IVM_2006_3_a8
ER  - 
%0 Journal Article
%A L. D. Èskin
%T The Parsons model in the case of a bifurcation point with two-dimensional branching
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2006
%P 62-75
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2006_3_a8/
%G ru
%F IVM_2006_3_a8
L. D. Èskin. The Parsons model in the case of a bifurcation point with two-dimensional branching. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2006), pp. 62-75. http://geodesic.mathdoc.fr/item/IVM_2006_3_a8/

[1] Parsons J. D., “Nematic ordering in a system of rods”, Phys. Rev. A, 19:3 (1979), 1225–1230 | DOI | MR

[2] Kayser R. F., Raveche H. J., “Bifurcation in Onsager's model of the isotropic-nematic transition”, Phys. Rev. A, 17:6 (1978), 2067–2072 | DOI

[3] Eskin L. D., “Uravnenie Onzagera kak uravnenie Lyapunova–Shmidta”, Izv. vuzov. Matematika, 1998, no. 8, 71–78 | MR | Zbl

[4] Eskin L. D., “Ob integralnom uravnenii teorii fazovykh perekhodov v sisteme magnitnykh sterzhnei”, TMF, 109:3 (1996), 427–440 | MR | Zbl

[5] Eskin L. D., “Ob integralnom uravnenii, opisyvayuschem orientatsionnye fazovye perekhody v sisteme magnitnykh sterzhnei”, FAN, 33:1 (1999), 92–95 | MR | Zbl

[6] Vainberg M. M., Trenogin V. A., Teoriya vetvleniya reshenii nelineinykh integralnykh uravnenii, Nauka, M., 1969, 528 pp. | MR | Zbl

[7] Eskin L. D., “Ob integralnom uravnenii, opisyvayuschem orientatsionnye fazovye perekhody v modeli Parsonsa”, Izv. vuzov. Matematika, 1999, no. 10, 63–72 | MR

[8] Eskin L. D., Bakhtieva L. U., “O modeli Parsonsa orientatsionnogo fazovogo perekhoda v sisteme ellipsoidalnykh chastits”, Matem. modelirovanie, 12:10 (2000), 3–18 | MR | Zbl

[9] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, summ, ryadov i proizvedenii, GIFML, M., 1962, 1100 pp.

[10] Krasnoselskii M. A., Topologicheskie metody v teorii nelineinykh integralnykh uravnenii, Gostekhizdat, M., 1956, 392 pp. | MR

[11] Krasnoselskii M. A., Zabreiko P. P., Geometricheskie metody nelineinogo analiza, Nauka, M., 1975, 512 pp. | MR

[12] Skrypnik I. V., Nelineinye ellipticheskie uravneniya vysshego poryadka, Nauk. dumka, Kiev, 1973, 220 pp. | MR

[13] Trenogin V. A., Sidorov N. A., “Issledovanie tochek bifurkatsii i nepreryvnykh vetvei reshenii nelineinykh uravnenii”, Differentsialnye i integralnye uravneniya, no. 1, Irkutsk, 1972, 216–247 | MR

[14] Vilenkin N. Ya., Spetsialnye funktsii i teoriya predstavlenii grupp, Nauka, M., 1965, 588 pp. | MR