Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2006_11_a7, author = {A. V. Stolyarov}, title = {A space with conformal connection}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {42--54}, publisher = {mathdoc}, number = {11}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2006_11_a7/} }
A. V. Stolyarov. A space with conformal connection. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2006), pp. 42-54. http://geodesic.mathdoc.fr/item/IVM_2006_11_a7/
[1] Kartan E., Prostranstva affinnoi, proektivnoi i konformnoi svyaznosti, Izd-vo Kazansk. un-ta, Kazan, 1962, 210 pp. | MR
[2] Lumiste Yu. G., “Teoriya svyaznostei v rassloennykh prostranstvakh”, Itogi nauki i tekhn. Algebra. Topologiya. Geometriya, VINITI, M., 1971, 123–168 | MR
[3] Laptev G. F., “Differentsialnaya geometriya pogruzhennykh mnogoobrazii. Teoretiko-gruppovoi metod differentsialno-geometricheskikh issledovanii”, Tr. Mosk. matem. o-va, 2, 1953, 275–382 | MR | Zbl
[4] Evtushik L. E., Lumiste Yu. G., Ostianu N. M., Shirokov A. P., Differentsialno-geometricheskie struktury na mnogoobraziyakh, Itogi nauki i tekhn. Probl. geometrii, 9, VINITI, M., 1979, 246 pp. | MR | Zbl
[5] Ostianu N. M., “O kanonizatsii podvizhnogo repera pogruzhennogo mnogoobraziya”, Rev. Math. pures Appl., 7:2 (1962), 231–240 | MR | Zbl
[6] Bushmanova G. V., Norden A. P., Elementy konformnoi geometrii, Izd-vo Kazansk. un-ta, Kazan, 1972, 178 pp. | MR
[7] Akivis M. A., “K konformno-differentsialnoi geometrii mnogomernykh poverkhnostei”, Matem. sb., 53:1 (1961), 53–72 | MR | Zbl
[8] Akivis M. A., Goldberg V. V., Conformal differential geometry and its generalizations, USA, 1996, 384 pp. | MR
[9] Rozenfeld B. A., Mnogomernye prostranstva, Nauka, M., 1966, 646 pp. | MR
[10] Norden A. P., Prostranstva affinnoi svyaznosti, Nauka, M., 1976, 432 pp. | MR
[11] Laptev G. F., “Mnogoobraziya, pogruzhennye v obobschennye prostranstva”, Tr. 4-go Vsesoyuzn. matem. s'ezda, T. 2 (1961), Leningrad, 1964, 226–233 | MR | Zbl