Minimal ruled surfaces in the three-dimensional geometries $S^2 \times R$ и $H^2 \times R$
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2004), pp. 46-52.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2004_9_a5,
     author = {L. A. Masal'tsev},
     title = {Minimal ruled surfaces in the three-dimensional geometries  $S^2 \times R$ {\cyri} $H^2 \times R$},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {46--52},
     publisher = {mathdoc},
     number = {9},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2004_9_a5/}
}
TY  - JOUR
AU  - L. A. Masal'tsev
TI  - Minimal ruled surfaces in the three-dimensional geometries  $S^2 \times R$ и $H^2 \times R$
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2004
SP  - 46
EP  - 52
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2004_9_a5/
LA  - ru
ID  - IVM_2004_9_a5
ER  - 
%0 Journal Article
%A L. A. Masal'tsev
%T Minimal ruled surfaces in the three-dimensional geometries  $S^2 \times R$ и $H^2 \times R$
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2004
%P 46-52
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2004_9_a5/
%G ru
%F IVM_2004_9_a5
L. A. Masal'tsev. Minimal ruled surfaces in the three-dimensional geometries  $S^2 \times R$ и $H^2 \times R$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2004), pp. 46-52. http://geodesic.mathdoc.fr/item/IVM_2004_9_a5/

[1] Darboux G., Lecons sur la théorie générale des surfaces, Premiere Partie, Gauthier-Villars, Paris, 1887, 513 pp. | Zbl

[2] Lawson H. B., “Complete minimal surfaces in $S^3$”, Ann. Math., 92 (1970), 335–374 | DOI | MR | Zbl

[3] Carmo M. do, Dajczer M., “Rotation hypersurfaces in spaces of constant curvature”, Trans. Amer. Math. Soc., 277:2 (1983), 685–709 | DOI | MR | Zbl

[4] Barbosa J. M., Dajczer M., Jorge L. P., “Minimal ruled submanifolds in spaces of constant curvature”, Indiana Univ. Math. J., 33 (1984), 531–542 | DOI | MR

[5] Thurston W. P., Three-dimensional geometry and topology, Vol. 1, Princeton Univ. press, Princeton, 1997, 311 pp. | MR