Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2004_9_a5, author = {L. A. Masal'tsev}, title = {Minimal ruled surfaces in the three-dimensional geometries $S^2 \times R$ {\cyri} $H^2 \times R$}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {46--52}, publisher = {mathdoc}, number = {9}, year = {2004}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2004_9_a5/} }
TY - JOUR AU - L. A. Masal'tsev TI - Minimal ruled surfaces in the three-dimensional geometries $S^2 \times R$ и $H^2 \times R$ JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2004 SP - 46 EP - 52 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2004_9_a5/ LA - ru ID - IVM_2004_9_a5 ER -
L. A. Masal'tsev. Minimal ruled surfaces in the three-dimensional geometries $S^2 \times R$ и $H^2 \times R$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2004), pp. 46-52. http://geodesic.mathdoc.fr/item/IVM_2004_9_a5/
[1] Darboux G., Lecons sur la théorie générale des surfaces, Premiere Partie, Gauthier-Villars, Paris, 1887, 513 pp. | Zbl
[2] Lawson H. B., “Complete minimal surfaces in $S^3$”, Ann. Math., 92 (1970), 335–374 | DOI | MR | Zbl
[3] Carmo M. do, Dajczer M., “Rotation hypersurfaces in spaces of constant curvature”, Trans. Amer. Math. Soc., 277:2 (1983), 685–709 | DOI | MR | Zbl
[4] Barbosa J. M., Dajczer M., Jorge L. P., “Minimal ruled submanifolds in spaces of constant curvature”, Indiana Univ. Math. J., 33 (1984), 531–542 | DOI | MR
[5] Thurston W. P., Three-dimensional geometry and topology, Vol. 1, Princeton Univ. press, Princeton, 1997, 311 pp. | MR