Boundary value problems for the Helmholtz equation in a quadrant and in a half-plane formed from two quadrants
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2004), pp. 63-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2004_7_a6,
     author = {N. B. Pleschinskii and D. N. Tumakov},
     title = {Boundary value problems for the {Helmholtz} equation in a quadrant and in a half-plane formed from two quadrants},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {63--74},
     publisher = {mathdoc},
     number = {7},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2004_7_a6/}
}
TY  - JOUR
AU  - N. B. Pleschinskii
AU  - D. N. Tumakov
TI  - Boundary value problems for the Helmholtz equation in a quadrant and in a half-plane formed from two quadrants
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2004
SP  - 63
EP  - 74
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2004_7_a6/
LA  - ru
ID  - IVM_2004_7_a6
ER  - 
%0 Journal Article
%A N. B. Pleschinskii
%A D. N. Tumakov
%T Boundary value problems for the Helmholtz equation in a quadrant and in a half-plane formed from two quadrants
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2004
%P 63-74
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2004_7_a6/
%G ru
%F IVM_2004_7_a6
N. B. Pleschinskii; D. N. Tumakov. Boundary value problems for the Helmholtz equation in a quadrant and in a half-plane formed from two quadrants. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2004), pp. 63-74. http://geodesic.mathdoc.fr/item/IVM_2004_7_a6/

[1] Pleshchinskii N. B., Tumakov D. N., “On solving diffraction problems for the junctions of open waveguides in the classes of distributions”, Mathematical Methods in Electromagnetic Theory, Proc. Int. Conf. MMET*98 (Kharkov, Ukraine, June 2–5, 1998), 2, 801—803

[2] Pleshchinskaya I. E., Pleshchinskii N. B., “The Cauchy problem and potentials for elliptic partial differential equations and some of their applications”, Advances in Equations and Inequalities, ed. J. M. Rassias, Hardronic Press, 1999, 127–146

[3] Pleschinskii N. B., Tumakov D. N., Metod chastichnykh oblastei dlya skalyarnykh koordinatnykh zadach difraktsii elektromagnitnykh voln v klassakh obobschennykh funktsii, Preprint 2000-1, Kazansk. matem. o-vo., 2000, 50 pp.

[4] Makher A., Pleschinskii N. B., “Zadacha o skachke dlya uravneniya Gelmgoltsa v ploskosloistoi srede i ee prilozheniya”, Izv. vuzov. Matematika, 2002, no. 1, 45–56 | MR | Zbl

[5] Meister E., Latz N., “Ein System singulärer Integralgleichungen aus der Theorie der Beugung elektromagnetischer Wellen an dielektrischen Keilen”, Z. angew. Math. und Mech., 44 (1964), 47–49 | MR

[6] Kurilko V. I., “Rasseyanie elektromagnitnykh voln pryamougolnym dielektricheskim klinom”, Izv. vuzov. Radiofizika, 9:5 (1966), 980–986

[7] Kraut E. A., Lehman G. W., “Diffraction on electromagnetic waves by a right-angle dielectric wedge”, J. Math. Phys., 10:8 (1969), 1340–134 | DOI | MR

[8] Aleksandrova A. A., Khizhnyak N. A., “Difraktsiya elektromagnitnykh voln na dielektricheskom kline”, Zhurn. teor. fiz., 44:11 (1974), 2241–2249

[9] Gakhov F. D., Cherskii Yu. I., Uravneniya tipa svertki, Nauka, M., 1978, 296 pp. | MR | Zbl