Description of special submonoids of the global supermonoid of a free monoid
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2004), pp. 46-56.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2004_3_a6,
     author = {B. Melnikov},
     title = {Description of special submonoids of the global supermonoid of a free monoid},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {46--56},
     publisher = {mathdoc},
     number = {3},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2004_3_a6/}
}
TY  - JOUR
AU  - B. Melnikov
TI  - Description of special submonoids of the global supermonoid of a free monoid
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2004
SP  - 46
EP  - 56
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2004_3_a6/
LA  - ru
ID  - IVM_2004_3_a6
ER  - 
%0 Journal Article
%A B. Melnikov
%T Description of special submonoids of the global supermonoid of a free monoid
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2004
%P 46-56
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2004_3_a6/
%G ru
%F IVM_2004_3_a6
B. Melnikov. Description of special submonoids of the global supermonoid of a free monoid. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2004), pp. 46-56. http://geodesic.mathdoc.fr/item/IVM_2004_3_a6/

[1] Melnikov B., “Some equivalence problems for free monoids and for subclasses of the $CF$-grammars class”, Number Theor. and Algebr. Methods in Comput. Sci., World Sci. Publ., 1995, 125–137 | MR | Zbl

[2] Dubasova O. A., Melnikov B. F., “Ob odnom rasshirenii klassa kontekstno-svobodnykh yazykov”, Programmirovanie, 1995, no. 6, 46–58 | MR | Zbl

[3] Melnikov B., Kashlakova E., “Some grammatical structures of programming languages as simple bracketed languages”, Informatika. Lietuva, 11:4 (2000), 441–454 | MR | Zbl

[4] Melnikov B., “A new algorithm of the state-minimization for the nondeterministic finite automata”, The Korean J. of Comput. and Appl. Math., 6:2 (1999), 277–290 | MR | Zbl

[5] Melnikov B., “$2\omega$-finite automata and sets of obstructions of their languages”, The Korean J. of Comput. and Appl. Math., 6:3 (1999), 565–574 | MR | Zbl

[6] Melnikov B., “Once more about the state-minimization of the nondeterministic finite automata”, The Korean J. of Comput. and Appl. Math., 7:3 (2000), 655–662 | MR | Zbl

[7] Litlvud Dzh., Matematicheskaya smes, Hauka, M., 1990, 140 pp. | MR

[8] Kon P., Svobodnye koltsa i ikh svyazi, Mir, M., 1975, 512 pp. | MR

[9] Obschaya algebra, t. 2, Nauka, M., 1991, 480 pp.

[10] Salomaa A., Zhemchuzhiny teorii formalnykh yazykov, Mir, M., 1986, 166 pp. | MR

[11] Lalleman Zh., Polugruppy i kombinatornye prilozheniya, Mir, M., 1985, 484 pp. | MR

[12] Melnikov B., “The equality condition for infinite catenations of two sets of finite words”, Int. J. Foundat. of Comput. Sci., 4:3 (1993), 267–274 | DOI | MR | Zbl

[13] Melnikov B. F., “Algoritm proverki ravenstva beskonechnykh iteratsii konechnykh yazykov”, Vestn. Mosk. un-ta. Ser. vychisl. matem. i kibernet., 1996, no. 4, 49–54

[14] Eilenberg S., Automata, languages and machines, Vol. A, Academ. Press, New York, 1974, 614 pp. | MR | Zbl

[15] Čulik K. II, Salomaa A., “On infinite words obtained by iterating morphisms”, Theor. Comput. Sci., 19 (1982), 29–38 | DOI | MR

[16] Thomas W., “Automata on infinite objects”, Handbook of Theor. Comput. Sci., Vol. B, Elsevier Sci. Publ., 1990, 133–191 | MR | Zbl

[17] Staiger L., “$\omega$-Languages”, Handbook of Formal Languages, Vol. 3, Springer, Berlin, 1997, 339–387 | MR

[18] Perrin D., “Finite automata”, Handbook of Theor. Comput. Sci., Vol. A, Elsevier Sci. Publ., 1990, 1–58 | MR

[19] Melnikov B. F., “Ob odnoi klassifikatsii posledovatelnostnykh kontekstno-svobodnykh yazykov i grammatik”, Vestn. Mosk. un-ta. Ser. vychisl. matem. i kibernet., 1993, no. 3, 64–69