A method for solving semi-coercive variational inequalities, based on the method of iterative proximal regularization
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2004), pp. 31-35.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2004_1_a4,
     author = {E. M. Vikhtenko and R. V. Namm},
     title = {A method for solving semi-coercive variational inequalities, based on the method of iterative proximal regularization},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {31--35},
     publisher = {mathdoc},
     number = {1},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2004_1_a4/}
}
TY  - JOUR
AU  - E. M. Vikhtenko
AU  - R. V. Namm
TI  - A method for solving semi-coercive variational inequalities, based on the method of iterative proximal regularization
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2004
SP  - 31
EP  - 35
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2004_1_a4/
LA  - ru
ID  - IVM_2004_1_a4
ER  - 
%0 Journal Article
%A E. M. Vikhtenko
%A R. V. Namm
%T A method for solving semi-coercive variational inequalities, based on the method of iterative proximal regularization
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2004
%P 31-35
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2004_1_a4/
%G ru
%F IVM_2004_1_a4
E. M. Vikhtenko; R. V. Namm. A method for solving semi-coercive variational inequalities, based on the method of iterative proximal regularization. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2004), pp. 31-35. http://geodesic.mathdoc.fr/item/IVM_2004_1_a4/

[1] Glavachek I., Gaslinger Ya., Nechas I., Lovishek Ya., Reshenie variatsionnykh neravenstv v mekhanike, M., Mir, 1986, 270 pp. | MR

[2] Kikuchi N., Oden T., Contact problem in elasticity: a study of variational inequalities and finite element method, SIAM, Philadelphia, 1988, 495 pp. | MR | Zbl

[3] Kaplan A. A., “Ob ustoichivosti metodov resheniya zadach vypuklogo programmirovaniya i variatsionnykh neravenstv”, Modeli i metody optimizatsii, Tr. in-ta matem. SO AN SSSR, 10, 1988, 132–159 | MR | Zbl

[4] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979, 399 pp. | MR

[5] Namm R. V., “O edinstvennosti gladkogo resheniya v staticheskoi zadache s treniem po zakonu Kulona i dvustoronnim kontaktom”, PMM, 59:2 (1995), 330–335 | MR | Zbl

[6] Fikera G., Teoremy suschestvovaniya v teorii uprugosti, Mir, M., 1974, 159 pp.

[7] Zolotukhin A. Ya., Namm R. V., “Metod resheniya negladkikh polukoertsitivnykh variatsionnykh neravenstv, osnovannyi na metode poshagovoi prox-regulyarizatsii”, Tr. NII matem.-informats. osnov obucheniya Novosib. un-ta. Aktualn. problemy sovremen. matem., 3, 1997, 68–74 | Zbl

[8] Zolotukhin A. Ya., Namm R. V., Pachina A. V., “Priblizhennoe reshenie variatsionnoi zadachi Mosolova i Myasnikova s treniem na granitse po zakonu Kulona”, Sib. zhurn. vychisl. matem., 4:2 (2001), 163–177 | MR | Zbl

[9] Namm R. V., Sachkov S. A., “Ob ustoichivom metode resheniya zadachi Mosolova i Myasnikova s treniem na granitse, osnovannom na skheme dvoistvennosti”, Sib. zhurn. vychisl. matem., 5:4 (2002), 351–365 | MR | Zbl