Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2003_3_a0, author = {R. T. Valeeva and I. K. Rakhimov}, title = {On a direct method for solving a two-dimensional weakly singular integral equation of the first kind}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {3--14}, publisher = {mathdoc}, number = {3}, year = {2003}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2003_3_a0/} }
TY - JOUR AU - R. T. Valeeva AU - I. K. Rakhimov TI - On a direct method for solving a two-dimensional weakly singular integral equation of the first kind JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2003 SP - 3 EP - 14 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2003_3_a0/ LA - ru ID - IVM_2003_3_a0 ER -
%0 Journal Article %A R. T. Valeeva %A I. K. Rakhimov %T On a direct method for solving a two-dimensional weakly singular integral equation of the first kind %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2003 %P 3-14 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2003_3_a0/ %G ru %F IVM_2003_3_a0
R. T. Valeeva; I. K. Rakhimov. On a direct method for solving a two-dimensional weakly singular integral equation of the first kind. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2003), pp. 3-14. http://geodesic.mathdoc.fr/item/IVM_2003_3_a0/
[1] Arnold D. N., “A spline-trigonometric Galerkin method and an exponentially convergent boundary integral method”, Math. Comput., 41:164 (1983), 383–397 | DOI | MR | Zbl
[2] Valeeva R. T., Splain-trigonometricheskii metod Galerkina resheniya integralnykh uravnenii, Dep. v VINITI 04.09.92, No 2726-B92, Kazansk. gos. un-t, Kazan, 1992, 15 pp.
[3] Valeeva R. T., Approksimativnye metody resheniya slabosingulyarnykh integralnykh uravnenii pervogo roda, Dis. ...kand. fiz.-matem. nauk, Kazan, 1995, 108 pp.
[4] Gabdulkhaev B. G., Chislennyi analiz singulyarnykh integralnykh uravnenii. Izbrannye glavy, Izd-vo Kazansk. un-ta, Kazan, 1995, 230 pp. | MR
[5] Gabdulkhaev B. G., “Ob odnom optimalnom splain-metode resheniya operatornykh uravnenii”, Izv. vuzov. Matematika, 2002, no. 2, 23–36 | MR
[6] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1977, 744 pp. | MR | Zbl
[7] Gabdulkhaev B. G., Pryamye metody resheniya singulyarnykh integralnykh uravnenii I roda, Izd-vo Kazansk. un-ta, Kazan, 1994, 288 pp. | MR
[8] Surai L. A., Pryamye metody resheniya integralnykh uravnenii pervogo roda s logarifmicheskoi osobennostyu, Dis. ...kand. fiz.-matem. nauk, Kazan, 1994, 131 pp.
[9] Gabdulkhaev B. G., Optimalnye approksimatsii reshenii lineinykh zadach, Izd-vo Kazansk. un-ta, Kazan, 1980, 232 pp. | MR
[10] Gabdulkhaev B. G., “K chislennomu resheniyu polnykh singulyarnykh integralnykh uravnenii”, Aktualnye voprosy teorii kraevykh zadach i ikh prilozheniya, Cheboksary, 1988, 138–146
[11] Marchuk G. I., Agoshkov V. I., Vvedenie v proektsionno-setochnye metody, Nauka, M., 1981, 416 pp. | MR
[12] Korneichuk N. P., Splainy v teorii priblizheniya, Nauka, M., 1984, 352 pp. | MR
[13] Bernshtein S. N., “O nailuchshem priblizhenii funktsii neskolkikh peremennykh posredstvom mnogochlenov i trigonometricheskikh summ”, Sobr. soch., T. 2, Izd-vo AN SSSR, M., 1954, 540–545
[14] Kantorovich L. V., Krylov V. I., Priblizhennye metody vysshego analiza, Fizmatgiz, M., 1962, 708 pp. | MR