A parallel method of projection onto the convex hull of a family of sets
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2003), pp. 78-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2003_12_a6,
     author = {E. A. Nurminski},
     title = {A parallel method of projection onto the convex hull of a family of sets},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {78--82},
     publisher = {mathdoc},
     number = {12},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2003_12_a6/}
}
TY  - JOUR
AU  - E. A. Nurminski
TI  - A parallel method of projection onto the convex hull of a family of sets
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2003
SP  - 78
EP  - 82
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2003_12_a6/
LA  - ru
ID  - IVM_2003_12_a6
ER  - 
%0 Journal Article
%A E. A. Nurminski
%T A parallel method of projection onto the convex hull of a family of sets
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2003
%P 78-82
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2003_12_a6/
%G ru
%F IVM_2003_12_a6
E. A. Nurminski. A parallel method of projection onto the convex hull of a family of sets. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2003), pp. 78-82. http://geodesic.mathdoc.fr/item/IVM_2003_12_a6/

[1] Kaczmarz S., “Angenäherte Auflösung von Systemen linearer Gleichungen”, Bull. Acad. Polon. Sci. Lett., A35 (1937), 355–357

[2] Bregman L. M., “Metod posledovatelnykh proektsii dlya poiska obschei tochki vypuklykh mnozhestv”, DAN SSSR, 162 (1965), 487–490 | MR | Zbl

[3] Gubin L. G., Polyak B. T., Raik E. V., “Metod proektsii dlya nakhozhdeniya obschei tochki vypuklykh mnozhestv”, Zhurn. vychisl. matem. i matem. fiz., 7:1 (1967), 1–24

[4] Censor Y., Cohen N., Kutscher (Kotzer) T., Shamir J., “Summed squared distance error reduction by simultaneous multiprojections and applications”, Appl. Math. and Comput., 126 (2002), 157–179 | DOI | MR | Zbl

[5] Crombez C., “A parallel projection method based on sequential most remote set in convex feasibility problems”, Appl. Math. and Comput., 72 (1995), 113–124 | DOI | MR | Zbl

[6] Garcia-Palomares U. M., Gonzalez-Castano F. J., “Incomplete projection algorithms for solving the convex feasibility problem”, Numer. Algorithms, 18 (1998), 177–193 | DOI | MR | Zbl

[7] Leikhtveis K., Vypuklye mnozhestva, Nauka, M., 1985, 336 pp. | MR

[8] Uchebno-informatsionnyi tsentr po parallelnym vychisleniyam, http://parallel.ru

[9] Sonnevend G., “New algorithms in convex programming based on the notion of “centre” (for systems of analytic inequalities) and on rational extrapolation”, Trends in Math. Optim. Intern. Ser. Numer. Math., 84, Birkhäuser-Verlag, Basel, 1988, 311–326 | MR

[10] Nurminskii E. A., “Ob odnom klasse metodov vypuklogo programmirovaniya”, Zhurn. vychisl. matem. i matem. fiz., 26:8 (1986), 1150–1159 | MR

[11] Goffin J.-L., Haurie A., Vial J.-Ph., “Decomposition and nondifferentiable optimization with the projective algorithm”, Management Sci., 37 (1992), 284–302 | DOI

[12] Ye Y., “A potential reduction algorithm allowing column generations”, SIAM J. Optim., 2 (1992), 7–20 | DOI | MR

[13] Altman A., Kiwiel K. C., “A note on some analytic center cutting plane methods for convex feasibility and minimization problems”, Comput. Optim. and Appl., 5 (1996), 175–180 | MR | Zbl