Set-theoretic structure of computable sets
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2003), pp. 70-76.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2003_10_a8,
     author = {A. N. Frolov},
     title = {Set-theoretic structure of computable sets},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {70--76},
     publisher = {mathdoc},
     number = {10},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2003_10_a8/}
}
TY  - JOUR
AU  - A. N. Frolov
TI  - Set-theoretic structure of computable sets
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2003
SP  - 70
EP  - 76
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2003_10_a8/
LA  - ru
ID  - IVM_2003_10_a8
ER  - 
%0 Journal Article
%A A. N. Frolov
%T Set-theoretic structure of computable sets
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2003
%P 70-76
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2003_10_a8/
%G ru
%F IVM_2003_10_a8
A. N. Frolov. Set-theoretic structure of computable sets. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2003), pp. 70-76. http://geodesic.mathdoc.fr/item/IVM_2003_10_a8/

[1] Cook S. A., “The complexity of theorem proving procedures”, Proc. 3rd Ann. ACM Symp. on Theory Comp., 1971, 151–158 | Zbl

[2] Ambos-Spies K., “Honest polynomial time reducibilities and the $P=NP$ problem”, J. Comput. System Sci., 39 (1989), 250–281 | DOI | MR | Zbl

[3] Karp R. M., “Reducibility among combinatorial problems”, Complexity Comput. Computat. Proc. Symp., New York, 1972, 85–104 | MR

[4] Maltsev A. I., Algoritmy i rekursivnye funktsii, Nauka, M., 1986, 367 pp. | MR

[5] Soare R. I., Recursively enumerable sets and degrees, Springer-Verlag, Heidelberg, 1987 ; Soar R. I., Vychislimo perechislimye mnozhestva i stepeni, Kazanskoe matem. ob-vo, Kazan, 2000, 576 pp. | MR | MR | Zbl

[6] Ershov Yu. L., Problemy razreshimosti i konstruktivnye modeli, Nauka, M., 1980, 415 pp. | MR