A~basic analogue of the generalized $H$-function
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2001), pp. 73-75.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2001_2_a8,
     author = {Nguyen Xuan Thao},
     title = {A~basic analogue of the generalized $H$-function},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {73--75},
     publisher = {mathdoc},
     number = {2},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2001_2_a8/}
}
TY  - JOUR
AU  - Nguyen Xuan Thao
TI  - A~basic analogue of the generalized $H$-function
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2001
SP  - 73
EP  - 75
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2001_2_a8/
LA  - ru
ID  - IVM_2001_2_a8
ER  - 
%0 Journal Article
%A Nguyen Xuan Thao
%T A~basic analogue of the generalized $H$-function
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2001
%P 73-75
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2001_2_a8/
%G ru
%F IVM_2001_2_a8
Nguyen Xuan Thao. A~basic analogue of the generalized $H$-function. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2001), pp. 73-75. http://geodesic.mathdoc.fr/item/IVM_2001_2_a8/

[1] Thomae J., “Beiträge zur Theorie der durch die Heinesche Reihe: $1+\frac{1-q^a}{1-q}\cdot \frac{1-q^b}{1-q^c}\cdot x+\frac{1-q^a}{1-q}\cdot \frac{1-q^{a+1}}{1-q^2}\cdot \frac{1-q^b}{1-q^c}\cdot \frac{1-q^{b+1}}{1-q^{c+1}}\cdot x^2+\dotsb$ darstellbaren Functionen”, J. reine angew. Math., 70 (1869), 258–281 | Zbl

[2] Jackson F. H., “A generalization of the functions $\Gamma(n)$ and $x^n$”, Proc. Roy. Soc. London, 74 (1904), 64–72 | DOI | Zbl

[3] Askey R., “The $q$-gamma and $q$-beta functions”, Appl. Anal., 8 (1978), 125–141 | DOI | MR | Zbl

[4] Moak D. S., “The $q$-gamma function for $q>1$”, Aequat. Math., 20 (1980), 278–285 | DOI | MR | Zbl

[5] Marichev O. I., Vu Kim Tuan, “O nekotorykh svoistvakh $q$-gamma funktsii $\Gamma_q(z)$”, DAN BSSR, 26:6 (1982), 488–491 | MR | Zbl

[6] Ismail M. E. H., Lorch L., Muldon M. E., “Completely monotonic functions associated with the gamma function and its $q$-analogues”, J. Math. Anal. Appl., 116:1 (1986), 1–9 | DOI | MR | Zbl

[7] Saxena R. K., Kumar R., “A basic analogue of generalized $H$-function”, Matematiche, 50:2 (1995), 263–271 | MR | Zbl

[8] Saxena R. K., Modi G. C., Kalla S. L., “A basic analogue of Fox's $H$-function”, Rev. Tec. Ing. Univ. Zulia, 6 (1983), 139–143 | MR | Zbl

[9] Saxena R. K., Kumar R., “Recurrence relations for the basic analogue of $H$-function”, Nat. Acad. Math., 8 (1990), 48–54 | MR | Zbl

[10] Saxena R. K., Kumar R., “Certain finite expansions associated with a basic analogue of $G$-function”, Rev. Tec. Ing. Univ. Zulia, 13 (1990), 111–116 | MR | Zbl

[11] Saxena V. P., “Formal solution of certain new pair of dual integral equation involving $H$-function”, Proc. Nat. Acad. Sci. India, 52(A):3 (1982), 366–375 | MR | Zbl

[12] Vaishya G. D., Jain Renu, Varma R. C., “Certain properties of the $I$-function”, Proc. Nat. Acad. Sci. India, 59(A):2 (1989), 329–337 | MR | Zbl

[13] Sharma C. K., Ahmad S. S., “Expansion formulae for generalized hypergeometric function”, Math. Studia, 61:1–4 (1992), 233–237 | MR | Zbl

[14] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integraly i ryady. Dopolnitelnye glavy, Nauka, M., 1986, 800 pp. | MR

[15] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, T. I, Nauka, M., 1965, 294 pp.

[16] Gasper Dzh., Rakhman M., Bazisnye gipergeometricheskie ryady, Mir, M., 1993, 352 pp. | MR | Zbl