Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2000_12_a1, author = {O. O. Vasil'eva and O. V. Vasil'ev}, title = {On the search for equilibrium controls in an $m$-person differential game}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {9--14}, publisher = {mathdoc}, number = {12}, year = {2000}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2000_12_a1/} }
TY - JOUR AU - O. O. Vasil'eva AU - O. V. Vasil'ev TI - On the search for equilibrium controls in an $m$-person differential game JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2000 SP - 9 EP - 14 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2000_12_a1/ LA - ru ID - IVM_2000_12_a1 ER -
O. O. Vasil'eva; O. V. Vasil'ev. On the search for equilibrium controls in an $m$-person differential game. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2000), pp. 9-14. http://geodesic.mathdoc.fr/item/IVM_2000_12_a1/
[1] Nash J. F., “Equilibrium points in $N$-person games”, Proc. Nat. Acad. Sci., 36 (1950), 48–49 | DOI | MR | Zbl
[2] Belenkii V. Z., Volkonskii V. A., Ivanov S. A. i dr., Iterativnye metody v teorii igr i programmirovanii, Nauka, M., 1974, 239 pp. | MR
[3] Vasilieva O. O., Vasiliev O. V., Inverse problems and equilibrium strategies in theory of optimal control, Manuskripte Presently at University of Zurich Institute Operations Research, 1997, 30 pp. | Zbl
[4] Vasiliev O. V., Optimization methods, Word Federation Publishing Company, Atlanta, 1996, 267 pp. | MR
[5] Vasilieva O. O., Vasiliev O. V., “On a method of equilibrium situations search in game of $N$-partners”, Plenarnye dokl. 11-i Mezhdunarodn. Baikalskoi shkoly-seminara “Metody optimizatsii i ikh prilozheniya”, Irkutsk, 1998, 32–35