Two-level methods, based on aggregation, for solving three-dimensional problems
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2000), pp. 42-61.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_2000_11_a4,
     author = {V. G. Korneev and Ya. Fish},
     title = {Two-level methods, based on aggregation, for solving three-dimensional problems},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {42--61},
     publisher = {mathdoc},
     number = {11},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2000_11_a4/}
}
TY  - JOUR
AU  - V. G. Korneev
AU  - Ya. Fish
TI  - Two-level methods, based on aggregation, for solving three-dimensional problems
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2000
SP  - 42
EP  - 61
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2000_11_a4/
LA  - ru
ID  - IVM_2000_11_a4
ER  - 
%0 Journal Article
%A V. G. Korneev
%A Ya. Fish
%T Two-level methods, based on aggregation, for solving three-dimensional problems
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2000
%P 42-61
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2000_11_a4/
%G ru
%F IVM_2000_11_a4
V. G. Korneev; Ya. Fish. Two-level methods, based on aggregation, for solving three-dimensional problems. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2000), pp. 42-61. http://geodesic.mathdoc.fr/item/IVM_2000_11_a4/

[1] Fedorenko R. P., “O skorosti skhodimosti odnogo iteratsionnogo protsessa”, Zhurn. vychisl. matem. i matem. fiz., 4:3 (1964), 559–564 | MR | Zbl

[2] Fedorenko R. P., “Relaksatsionnyi metod resheniya raznostnykh ellipticheskikh uravnenii”, Zhurn. vychisl. matem. i matem. fiz., 1:5 (1961), 922–972 | MR

[3] Bakhvalov N. S., “O skhodimosti odnogo relaksatsionnogo metoda pri estestvennykh ogranicheniyakh na ellipticheskii operator”, Zhurn. vychisl. matem. i matem. fiz., 6:5 (1966), 861–883 | Zbl

[4] Brandt A., McCormick S. E., Ruge J. W., “Algebraic multigrid (AMG) for sparse matrix equations”, Sparsity and its Appl., Cambridge Univ. Press, Cambridge, 1984 | MR

[5] Ruge J., Stuben K., “Algebraic multigrid”, Frontiers in Appl. Math. Philadelphia, 5 (1987), 73–130 | MR

[6] Lallemand M.-H., Steve H., Derviex A., “Unstructured multigriding by volume agglomeration: Current status”, Computer and Fluids, 21 (1992), 343–397 | DOI

[7] Lonsdale R. D., “An algebraic multigrid solver for the Navier–Stokes equations on unstructured meshes”, Int. J. Num. Meth. Heat Fluid Flow, 3 (1993), 3–14 | DOI

[8] Koobus B., Lallemand M.-H., Derviex A., “Unstructured volume-agglomeration MG: Solution of Poisson equation”, Int. J. Numer. Meth. Fluids, 1 (1994), 27–42 | DOI | MR | Zbl

[9] Bulgakov V. E., “Multilevel terative technique and aggregation concept with semi-analytical preconditioning for solving boundary value problems”, Commun. Numer. Methods Eng., 1993, 649–657 | DOI | MR | Zbl

[10] Bulgakov V. E., Kuhn G., “High-performance multilevel terative aggregation solver for large finite-element structural analysis problems”, Int. J. Numer. Meth. Eng., 38 (1995), 3529–3544 | DOI | Zbl

[11] Vanek P., “Acceleration of convergence of a two-level algorithm by smoothing transfer operator”, Appl. in Math., 37 (1992), 265–274 | MR | Zbl

[12] Vanek P., Krizkova J., Two-level methods on unstructured meshes with the convergence rate independent of the coarse-space size, Internal report, University of Colorado at Denver, 1995, P. 1–15

[13] Vanek P., Mandel J., Brezina M., “Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems”, Seventh Copper Mountain Conference on Multigrid Methods (September 1996), NASA Conference Publication, 3339, eds. N. Duane Melson, Tom A. Manteuffel, Steve F. McCormick, Craig C. Douglas, 721–736 | MR

[14] Vanek P., Brezina M., Mandel J., Convergence Analysis of Algebraic Multigrid Based on Smoothed Aggregation, UCD/CCM Report No 126, University of Colorado at Denver, February 1998, P. 1–14

[15] Fish J., Belsky V., “Generalized aggregation multilevel solver”, Int. J. Numer. Meth. Eng. Comp., 40 (1997), 4341–4361 | 3.0.CO;2-C class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[16] Fish J., Suvorov A., Belsky V., “Automated adaptive multilevel solver”, Comput. Meth. Appl. Mech. Eng., 149 (1997), 267–287 | DOI | MR | Zbl

[17] Bramble J. H., “Multigrid Methods”, Pitman Research Notes in Math. Sci. Longman Sci. Tech., 294, Harlow, Essex, 1993, 1–161 | MR

[18] Bramble J. H., Pasciak J. E., Wang J., Xu I., “Convergence estimates for multigrid algorithms without regularity assumptions”, Math. Comp., 57 (1991), 23–45 | DOI | MR | Zbl

[19] Hackbusch W., Multigrid Methods and Applications, Springer Series in Computational Mathematics, 4, Springer-Verlag, Berlin, 1985, XIV+380 pp. | MR | Zbl

[20] Shaidurov V. V., Mnogosetochnye metody konechnykh elementov, Nauka, M., 1995, 287 pp. | MR

[21] Korneev V. G., Skhemy metoda konechnykh elementov vysokikh poryadkov tochnosti, Izd-vo Leningr. un-ta, L., 1977, 205 pp. | MR

[22] Korneev V. G., “Iteratsionnye metody resheniya sistem algebraicheskikh uravnenii metoda konechnykh elementov”, Zhurn. vychisl. matem. i matem. fiz., 17:5 (1977), 1213–1233 | MR | Zbl

[23] Adams R. A., Sobolev Spaces, Academic Press, New York, 1975, 268 pp. | MR | Zbl

[24] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1964, 538 pp. | MR

[25] Nečas J., Les Methodes Directes un Theorie des Equations Elliptiques, Masson, Paris, 1967, 345 pp.

[26] Demyanovich Yu. K., “Ob otsenkakh skorosti skhodimosti nekotorykh proektsionnykh metodov resheniya ellipticheskikh uravnenii”, Zhurn. vychisl. matem. i matem. fiz., 8:1 (1968), 79–96

[27] Golovkin K. K., “Ob approksimatsii funktsii v proizvolnykh normakh”, Tr. matem. in-ta AN SSSR, 70, 1964, 26–37 | MR | Zbl

[28] Bramble J. H., Hilbert S. R., “Bounds for a class of linear functionals with application to Hermite interpolation”, Numer. Math., 16 (1971), 363–369 | DOI | MR

[29] Babuska I., Aziz A. K., “Survey lectures on the mathematical foundations of the finite element method”, The mathematical foundation of the finite element method with applications to particle differential equations, Academic Press, New York, 1972, 3–363 | MR

[30] Syarle F., Metod konechnykh elementov dlya ellipticheskikh uravnenii, Mir, M., 1980, 521 pp.

[31] Kadlec J., “O reguljarnosti resenija zadaci Puassona na oblasti s granicej, lokol'noi podobnoj granice vypukloj oblasti (on the regularity of the solution of the Poisson equation on a domain with the boundary locally similar to the boundary of a convex domain)”, Czechoslovak Math. J., 14 (1964), 386–393 | MR | Zbl