Increasing the accuracy of approximate solutions by residual correction for singularly perturbed equations with convective terms
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (1999), pp. 81-93.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_1999_5_a8,
     author = {G. I. Shishkin},
     title = {Increasing the accuracy of approximate solutions by residual correction for singularly perturbed equations with convective terms},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {81--93},
     publisher = {mathdoc},
     number = {5},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_1999_5_a8/}
}
TY  - JOUR
AU  - G. I. Shishkin
TI  - Increasing the accuracy of approximate solutions by residual correction for singularly perturbed equations with convective terms
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 1999
SP  - 81
EP  - 93
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_1999_5_a8/
LA  - ru
ID  - IVM_1999_5_a8
ER  - 
%0 Journal Article
%A G. I. Shishkin
%T Increasing the accuracy of approximate solutions by residual correction for singularly perturbed equations with convective terms
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 1999
%P 81-93
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_1999_5_a8/
%G ru
%F IVM_1999_5_a8
G. I. Shishkin. Increasing the accuracy of approximate solutions by residual correction for singularly perturbed equations with convective terms. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (1999), pp. 81-93. http://geodesic.mathdoc.fr/item/IVM_1999_5_a8/

[1] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989, 616 pp. | MR

[2] Samarskii A. A., Nikolaev E. S., Metody resheniya setochnykh uravnenii, Nauka, M., 1978, 590 pp. | MR

[3] Bakhvalov N. S., “K optimizatsii metodov resheniya kraevykh zadach pri nalichii pogranichnogo sloya”, Zhurn. vychisl. matem. i matem. fiz., 9:4 (1969), 841–859 | Zbl

[4] Dulan E., Miller Dzh., Shilders U., Ravnomernye chislennye metody resheniya zadach s pogranichnym sloem, Mir, M., 1983, 199 pp. | MR

[5] Ilin A. M., “Raznostnaya skhema dlya differentsialnogo uravneniya s malym parametrom pri starshei proizvodnoi”, Matem. zametki, 6:2 (1969), 237–248

[6] Liseikin V. D., Petrenko V. E., Adaptivno-invariantnyi metod chislennogo resheniya zadach s pogranichnymi i vnutrennimi sloyami, VTs SO AN SSSR, Novosibirsk, 1989, 259 pp. | MR

[7] Shishkin G. I., Setochnye approksimatsii singulyarno vozmuschennykh ellipticheskikh i parabolicheskikh uravnenii, UrO RAN, Ekaterinburg, 1992, 233 pp.

[8] Miller J. J. H., O'Riordan E., Shishkin G. I., Fitted numerical methods for singular perturbation problems, World Scientific, Singapore, 1996, 166 pp. | MR

[9] Roos H.-G., Stynes M., Tobiska L., Numerical methods for singularly perturbed differential equations, Springer-Verlag, Berlin, 1996, 348 pp. | MR

[10] Böhmer K., Hemker P. W., Stetter H. J., “The defect correction approach”, Computing, 1984, no. 5, 1–32 | MR | Zbl

[11] Hemker P. W., Shishkin G. I., Shishkina L. P., “The use of defect correction for the solution of parabolic singular perturbation problems”, Z. anqew. Math. Mech. (ZAMM), 77:1 (1997), 59–74 | DOI | MR | Zbl

[12] Shishkin G. I., “Method of improving the accuracy of the approximate solutions to singularly perturbed equations by defect correction”, Russ. J. Numer. Anal. Math. Modelling, 11:6 (1996), 539–557 | MR | Zbl

[13] Axelsson O., Nikolova M., “Adaptive refinement for convection-diffusion problems based on a defect-correction technique and finite difference method”, Computing, 58:1 (1997), 1–30 | DOI | MR | Zbl

[14] Shishkin G. I., “Grid approximation of singularly perturbed boundary value problem for quasi-linear parabolic equation degenerating into the first-order equation”, Sov. J. Numer. Anal. Math. Modelling, 6:1 (1991), 61–81 | MR | Zbl

[15] Shishkin G. I., “Approksimatsiya singulyarno vozmuschennoi kraevoi zadachi dlya kvazilineinykh ellipticheskikh uravnenii, vyrozhdayuschikhsya v uravneniya pervogo poryadka”, Zhurn. vychisl. matem. i matem. fiz., 31:4 (1992), 550–566 | MR