@article{IVM_1998_2_a3,
author = {A. A. Efremov},
title = {$d$-r.e. degrees that are isolated from {above.~I}},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {20--28},
year = {1998},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_1998_2_a3/}
}
A. A. Efremov. $d$-r.e. degrees that are isolated from above. I. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (1998), pp. 20-28. http://geodesic.mathdoc.fr/item/IVM_1998_2_a3/
[1] Arslanov M. M., Lempp S., Shore R. A., “On isolating r.e. and isolated d-r.e. degrees”, Lecture Note Series, 224, London Math. Soc., 1996, 61–80 | MR | Zbl
[2] Cooper S. B., Lempp S., Watson P., “Weak density and cupping in the d-r.e. degrees”, Israel J. Math., 67 (1989), 2 | DOI | MR | Zbl
[3] Cooper S. B., Yi X., Isolated d-r.e. degrees, Preprint, University of Leeds, 1995 | MR | Zbl
[4] LaForte G., “The isolated d.r.e. degrees are dense in the r.e. degrees”, Math. Logic Quarterly, 42 (1996), 83–103 | DOI | MR | Zbl
[5] Lempp S., Slaman T. A., “A limit on relative genericity in the recursively enumerable sets”, J. Symb. Logic, 54:2 (1989) | DOI | MR | Zbl
[6] Soare R. I., Recursively enumerable sets and degrees, Springer-Verlag, Berlin, 1987 | MR