Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_1998_12_a10, author = {E. V. Aksenyushkina}, title = {The method of needle-shaped linearization in optimal control problems with functional constraints}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {93--97}, publisher = {mathdoc}, number = {12}, year = {1998}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_1998_12_a10/} }
TY - JOUR AU - E. V. Aksenyushkina TI - The method of needle-shaped linearization in optimal control problems with functional constraints JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 1998 SP - 93 EP - 97 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_1998_12_a10/ LA - ru ID - IVM_1998_12_a10 ER -
%0 Journal Article %A E. V. Aksenyushkina %T The method of needle-shaped linearization in optimal control problems with functional constraints %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 1998 %P 93-97 %N 12 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_1998_12_a10/ %G ru %F IVM_1998_12_a10
E. V. Aksenyushkina. The method of needle-shaped linearization in optimal control problems with functional constraints. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (1998), pp. 93-97. http://geodesic.mathdoc.fr/item/IVM_1998_12_a10/
[1] Antonik V. G., Srochko V. A., “K resheniyu zadach optimalnogo upravleniya na osnove metodov linearizatsii”, Zhurn. vychisl. matem. i matem. fiz., 32:7 (1992), 979–991 | MR | Zbl
[2] Srochko V. A., “Metod kvadratichnoi fazovoi approksimatsii dlya resheniya zadach optimalnogo upravleniya”, Izv. vuzov. Matematika, 1993, no. 12, 81–88 | MR | Zbl
[3] Srochko V. A., Mamonova N. V., “Kvazigradientnyi metod resheniya zadach optimalnogo upravleniya”, Izv. vuzov. Matematika, 1996, no. 12, 84–91 | MR | Zbl
[4] Srochko V. A., Khamidulin R. G., “Metod posledovatelnykh priblizhenii v zadachakh optimalnogo upravleniya s kraevymi usloviyami”, Zhurn. vychisl. matem. i matem. fiz., 26:4 (1986), 508–520 | MR | Zbl
[5] Srochko V. A., “Primenenie printsipa maksimuma dlya chislennogo resheniya zadach optimalnogo upravleniya s terminalnymi ogranicheniyami”, Kibernetika, 1986, no. 1, 73–77 | MR | Zbl
[6] Avakov A. R., “Neobkhodimye usloviya minimuma dlya neregulyarnykh zadach v banakhovykh prostranstvakh”, Tr. Matem. in-ta AN SSSR, 185, 1988, 3–29 | MR