Best harmonic approximation of convolutions in $L_1$ and $L_\infty$
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (1985), pp. 22-27.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_1985_5_a3,
     author = {M. I. Ganzburg},
     title = {Best harmonic approximation of convolutions in $L_1$ and $L_\infty$},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {22--27},
     publisher = {mathdoc},
     number = {5},
     year = {1985},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_1985_5_a3/}
}
TY  - JOUR
AU  - M. I. Ganzburg
TI  - Best harmonic approximation of convolutions in $L_1$ and $L_\infty$
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 1985
SP  - 22
EP  - 27
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_1985_5_a3/
LA  - ru
ID  - IVM_1985_5_a3
ER  - 
%0 Journal Article
%A M. I. Ganzburg
%T Best harmonic approximation of convolutions in $L_1$ and $L_\infty$
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 1985
%P 22-27
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_1985_5_a3/
%G ru
%F IVM_1985_5_a3
M. I. Ganzburg. Best harmonic approximation of convolutions in $L_1$ and $L_\infty$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (1985), pp. 22-27. http://geodesic.mathdoc.fr/item/IVM_1985_5_a3/