Finite groups for which the number of different prime $\pi$-divisors of the order is equal to the number of classes of non-invariant conjugate $\pi d$-subgroups
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (1963), pp. 40-43.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{IVM_1963_3_a5,
     author = {V. P. Gromyko},
     title = {Finite groups for which the number of different prime $\pi$-divisors of the order is equal to the number of classes of non-invariant conjugate $\pi d$-subgroups},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {40--43},
     publisher = {mathdoc},
     number = {3},
     year = {1963},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_1963_3_a5/}
}
TY  - JOUR
AU  - V. P. Gromyko
TI  - Finite groups for which the number of different prime $\pi$-divisors of the order is equal to the number of classes of non-invariant conjugate $\pi d$-subgroups
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 1963
SP  - 40
EP  - 43
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_1963_3_a5/
LA  - ru
ID  - IVM_1963_3_a5
ER  - 
%0 Journal Article
%A V. P. Gromyko
%T Finite groups for which the number of different prime $\pi$-divisors of the order is equal to the number of classes of non-invariant conjugate $\pi d$-subgroups
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 1963
%P 40-43
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_1963_3_a5/
%G ru
%F IVM_1963_3_a5
V. P. Gromyko. Finite groups for which the number of different prime $\pi$-divisors of the order is equal to the number of classes of non-invariant conjugate $\pi d$-subgroups. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (1963), pp. 40-43. http://geodesic.mathdoc.fr/item/IVM_1963_3_a5/