Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_1963_3_a5, author = {V. P. Gromyko}, title = {Finite groups for which the number of different prime $\pi$-divisors of the order is equal to the number of classes of non-invariant conjugate $\pi d$-subgroups}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {40--43}, publisher = {mathdoc}, number = {3}, year = {1963}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_1963_3_a5/} }
TY - JOUR AU - V. P. Gromyko TI - Finite groups for which the number of different prime $\pi$-divisors of the order is equal to the number of classes of non-invariant conjugate $\pi d$-subgroups JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 1963 SP - 40 EP - 43 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_1963_3_a5/ LA - ru ID - IVM_1963_3_a5 ER -
%0 Journal Article %A V. P. Gromyko %T Finite groups for which the number of different prime $\pi$-divisors of the order is equal to the number of classes of non-invariant conjugate $\pi d$-subgroups %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 1963 %P 40-43 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_1963_3_a5/ %G ru %F IVM_1963_3_a5
V. P. Gromyko. Finite groups for which the number of different prime $\pi$-divisors of the order is equal to the number of classes of non-invariant conjugate $\pi d$-subgroups. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (1963), pp. 40-43. http://geodesic.mathdoc.fr/item/IVM_1963_3_a5/