The theory of self-organized criticality how complexity theory
Informacionnye tehnologii i vyčislitelnye sistemy, no. 3 (2016), pp. 66-73.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the article "The theory of self-organized criticality how complexity theory" considered the investigation P. Bak sand model that studies the behavior of avalanches (spontaneous ssypany of the sand, resulting in the surface of the heap by increasing the angle of inclination). Gradually, some avalanches cover the entire surface of the pile as a whole. There is a state of self-organized criticality, or nonlinear equilibrium heap. From this perspective, the article analyzes the crises that have arisen in the world economy after 2000.
Keywords: self-organized criticality, complexity, nonlinear equilibrium, critical time, subcritical time, the economic crisis.
Mots-clés : fluctuations
@article{ITVS_2016_3_a4,
     author = {V. N. Kostiuk},
     title = {The theory of self-organized criticality how complexity theory},
     journal = {Informacionnye tehnologii i vy\v{c}islitelnye sistemy},
     pages = {66--73},
     publisher = {mathdoc},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ITVS_2016_3_a4/}
}
TY  - JOUR
AU  - V. N. Kostiuk
TI  - The theory of self-organized criticality how complexity theory
JO  - Informacionnye tehnologii i vyčislitelnye sistemy
PY  - 2016
SP  - 66
EP  - 73
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ITVS_2016_3_a4/
LA  - ru
ID  - ITVS_2016_3_a4
ER  - 
%0 Journal Article
%A V. N. Kostiuk
%T The theory of self-organized criticality how complexity theory
%J Informacionnye tehnologii i vyčislitelnye sistemy
%D 2016
%P 66-73
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ITVS_2016_3_a4/
%G ru
%F ITVS_2016_3_a4
V. N. Kostiuk. The theory of self-organized criticality how complexity theory. Informacionnye tehnologii i vyčislitelnye sistemy, no. 3 (2016), pp. 66-73. http://geodesic.mathdoc.fr/item/ITVS_2016_3_a4/