Criterion existence of regular arrangement set of twin symbolic words in matrix size $L\times(2k+1)$
Informacionnye tehnologii i vyčislitelnye sistemy, no. 2 (2010), pp. 50-58.

Voir la notice de l'article provenant de la source Math-Net.Ru

A particular case of problem called scheduling was considered in this article. This case comes to finding conditions of arrangement twin symbolic words ($2$-words) in rows of matrix $M(L\times(2k+1))$, $k\in N$ so that symbols in rows could stay close, and all symbols in columns of matrix could be different in pairs. Criterion of regular arrangement twin symbolic words in matrix M was found. This criterion allows to ensure the absence of windows in the work of teachers.
Keywords: regular schedule, scheduling, optimization of the schedule, NP-complete problems, problems is solved in polynomial time, criterion for the existence of a regular schedule.
@article{ITVS_2010_2_a4,
     author = {D. M. Alekberli},
     title = {Criterion existence of regular arrangement set of twin symbolic words in matrix size $L\times(2k+1)$},
     journal = {Informacionnye tehnologii i vy\v{c}islitelnye sistemy},
     pages = {50--58},
     publisher = {mathdoc},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ITVS_2010_2_a4/}
}
TY  - JOUR
AU  - D. M. Alekberli
TI  - Criterion existence of regular arrangement set of twin symbolic words in matrix size $L\times(2k+1)$
JO  - Informacionnye tehnologii i vyčislitelnye sistemy
PY  - 2010
SP  - 50
EP  - 58
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ITVS_2010_2_a4/
LA  - ru
ID  - ITVS_2010_2_a4
ER  - 
%0 Journal Article
%A D. M. Alekberli
%T Criterion existence of regular arrangement set of twin symbolic words in matrix size $L\times(2k+1)$
%J Informacionnye tehnologii i vyčislitelnye sistemy
%D 2010
%P 50-58
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ITVS_2010_2_a4/
%G ru
%F ITVS_2010_2_a4
D. M. Alekberli. Criterion existence of regular arrangement set of twin symbolic words in matrix size $L\times(2k+1)$. Informacionnye tehnologii i vyčislitelnye sistemy, no. 2 (2010), pp. 50-58. http://geodesic.mathdoc.fr/item/ITVS_2010_2_a4/