Criterion existence of regular arrangement set of twin symbolic words in matrix size $L\times(2k+1)$
Informacionnye tehnologii i vyčislitelnye sistemy, no. 2 (2010), pp. 50-58
Voir la notice de l'article provenant de la source Math-Net.Ru
A particular case of problem called scheduling was considered in this article. This case comes to finding conditions of arrangement twin symbolic words ($2$-words) in rows of matrix $M(L\times(2k+1))$, $k\in N$ so that symbols in rows could stay close, and all symbols in columns of matrix could be different in pairs. Criterion of regular arrangement twin symbolic words in matrix M was found. This criterion allows to ensure the absence of windows in the work of teachers.
Keywords:
regular schedule, scheduling, optimization of the schedule, NP-complete problems, problems is solved in polynomial time, criterion for the existence of a regular schedule.
@article{ITVS_2010_2_a4,
author = {D. M. Alekberli},
title = {Criterion existence of regular arrangement set of twin symbolic words in matrix size $L\times(2k+1)$},
journal = {Informacionnye tehnologii i vy\v{c}islitelnye sistemy},
pages = {50--58},
publisher = {mathdoc},
number = {2},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ITVS_2010_2_a4/}
}
TY - JOUR AU - D. M. Alekberli TI - Criterion existence of regular arrangement set of twin symbolic words in matrix size $L\times(2k+1)$ JO - Informacionnye tehnologii i vyčislitelnye sistemy PY - 2010 SP - 50 EP - 58 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ITVS_2010_2_a4/ LA - ru ID - ITVS_2010_2_a4 ER -
%0 Journal Article %A D. M. Alekberli %T Criterion existence of regular arrangement set of twin symbolic words in matrix size $L\times(2k+1)$ %J Informacionnye tehnologii i vyčislitelnye sistemy %D 2010 %P 50-58 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/ITVS_2010_2_a4/ %G ru %F ITVS_2010_2_a4
D. M. Alekberli. Criterion existence of regular arrangement set of twin symbolic words in matrix size $L\times(2k+1)$. Informacionnye tehnologii i vyčislitelnye sistemy, no. 2 (2010), pp. 50-58. http://geodesic.mathdoc.fr/item/ITVS_2010_2_a4/