Voir la notice de l'article provenant de la source Numdam
We investigate the complexity of languages described by some expressions containing shuffle operator and intersection. We show that deciding whether the shuffle of two words has a nonempty intersection with a regular set (or fulfills some regular pattern) is NL-complete. Furthermore we show that the class of languages of the form , with a shuffle language and a regular language , contains non-semilinear languages and does not form a family of mildly context- sensitive languages.
@article{ITA_2001__35_4_379_0, author = {J\c{e}drzejowicz, Joanna and Szepietowski, Andrzej}, title = {On the expressive power of the shuffle operator matched with intersection by regular sets}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {379--388}, publisher = {EDP-Sciences}, volume = {35}, number = {4}, year = {2001}, mrnumber = {1880806}, zbl = {0994.68084}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ITA_2001__35_4_379_0/} }
TY - JOUR AU - Jȩdrzejowicz, Joanna AU - Szepietowski, Andrzej TI - On the expressive power of the shuffle operator matched with intersection by regular sets JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2001 SP - 379 EP - 388 VL - 35 IS - 4 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/item/ITA_2001__35_4_379_0/ LA - en ID - ITA_2001__35_4_379_0 ER -
%0 Journal Article %A Jȩdrzejowicz, Joanna %A Szepietowski, Andrzej %T On the expressive power of the shuffle operator matched with intersection by regular sets %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2001 %P 379-388 %V 35 %N 4 %I EDP-Sciences %U http://geodesic.mathdoc.fr/item/ITA_2001__35_4_379_0/ %G en %F ITA_2001__35_4_379_0
Jȩdrzejowicz, Joanna; Szepietowski, Andrzej. On the expressive power of the shuffle operator matched with intersection by regular sets. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 35 (2001) no. 4, pp. 379-388. http://geodesic.mathdoc.fr/item/ITA_2001__35_4_379_0/
[1] Flow languages equal recursively enumerable languages. Acta Inform. 15 (1981) 209-217. | Zbl | MR
and ,[2] Very special languages and representations of recursively enumerable languages via computation stories. Inform. and Control 47 (1980) 201-212. | Zbl | MR
and ,[3] Shuffle languages are in P. Theoret. Comput. Sci. 250 (2001) 31-53. | Zbl | MR
and ,[4] Special families of sewing languages, in Workshop - Descriptional complexity of automata, grammars and related structures. Magdeburg (1999) 137-143.
and ,[5] Computational Complexity. Addison-Wesley Publ. Co (1994). | Zbl | MR
,[6] Software descriptions with flow expressions. IEEE Trans. Software Engrg. 3 (1978) 242-254. | Zbl
,[7] Computational Complexity. Reidel, Dordrecht, The Netherlands (1986). | Zbl | MR
and ,[8] On the complexity of iterated shuffle. J. Comput. Syst. Sci. 28 (1984) 345-358. | Zbl | MR
and ,