Polynomial size test sets for commutative languages
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 31 (1997) no. 3, pp. 291-304.

Voir la notice de l'article provenant de la source Numdam

@article{ITA_1997__31_3_291_0,
     author = {Hakala, Ismo and Kortelainen, Juha},
     title = {Polynomial size test sets for commutative languages},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     pages = {291--304},
     publisher = {EDP-Sciences},
     volume = {31},
     number = {3},
     year = {1997},
     mrnumber = {1483261},
     zbl = {0889.68091},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ITA_1997__31_3_291_0/}
}
TY  - JOUR
AU  - Hakala, Ismo
AU  - Kortelainen, Juha
TI  - Polynomial size test sets for commutative languages
JO  - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY  - 1997
SP  - 291
EP  - 304
VL  - 31
IS  - 3
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/item/ITA_1997__31_3_291_0/
LA  - en
ID  - ITA_1997__31_3_291_0
ER  - 
%0 Journal Article
%A Hakala, Ismo
%A Kortelainen, Juha
%T Polynomial size test sets for commutative languages
%J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
%D 1997
%P 291-304
%V 31
%N 3
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/item/ITA_1997__31_3_291_0/
%G en
%F ITA_1997__31_3_291_0
Hakala, Ismo; Kortelainen, Juha. Polynomial size test sets for commutative languages. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 31 (1997) no. 3, pp. 291-304. http://geodesic.mathdoc.fr/item/ITA_1997__31_3_291_0/

1. J. Albert and K. Culik Ii, Test sets for homomorphism équivalence on context free languages, Information and Control, 1980, 45, pp. 273-284. | Zbl | MR

2. J. Albert, K. Culik Ii and J. Karhumäki, Test sets for context free languages and algebraic systems of equations over free monoid, Information and Control, 1982, 52, pp. 172-186. | Zbl | MR

3. M. H. Albert and J. Lawrence, A proof of Ehrenfeucht's conjecture, Theoret. Comput. Sci., 1985, 41, pp. 121-123. | Zbl | MR

4. J. Albert and D. Wood, Checking sets, test sets rich languages and commutatively closed languages, Journal of Computer and System Sciences, 1983, 26, pp. 82-91. | Zbl | MR

5. I. Hakala and J. Kortelainen, On the system of word equations xi1 xi2...xim = yi1 yi2...y1n (i = 1, 2, ...) in a free monoid, Acta Inform., 1997, 34, pp. 217-230. | Zbl | MR

6. I. Hakala and J. Kortelainen, On the system of word equations xo ui1 xo ui1 x1 ui2 x2 ui3 x3 = yo vi1 y1 vi2 y2 vi3 y3 (i = 0, 1, 2,...) in a free monoid, Theor. Comput Sci. (to appear). | MR

7. M. A. Harrison, Introduction to Formal Language Theory, Addison-Wesley, Reading Massachusetts, 1978. | Zbl | MR

8. J. Karhumäki, W. Plandowski and W. Rytter, Polynomial-size test sets for context-free languages, Lecture Notes in Computer Sciences, 1992, 623, pp. 53-64. | Zbl | MR

9. J. Karhumäki, W. Plandowski and W. Rytter, Polynomial-size test sets for context-free languages, Journal of Computer and System Sciences, 1995, 50, pp. 11-19. | Zbl | MR

10. J. Karhumäki, W. Plandowski and S. Jarominek, Efficient construction of test sets for regular and context-free languages, Theor. Comp. Sci., 1993, 116, pp. 305-316. | Zbl | MR

11. M. Lothaire, Combinatorics on Words, Addison-Wesley, Reading Massachusetts, 1983. | Zbl | MR