Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2024_24_4_a3, author = {L. A. Sevastianov and K. P. Lovetskiy and D. S. Kulyabov and S. V. Sergeev}, title = {Numerical solution of first-order exact differential equations by the integrating factor method}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {512--525}, publisher = {mathdoc}, volume = {24}, number = {4}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ISU_2024_24_4_a3/} }
TY - JOUR AU - L. A. Sevastianov AU - K. P. Lovetskiy AU - D. S. Kulyabov AU - S. V. Sergeev TI - Numerical solution of first-order exact differential equations by the integrating factor method JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2024 SP - 512 EP - 525 VL - 24 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2024_24_4_a3/ LA - en ID - ISU_2024_24_4_a3 ER -
%0 Journal Article %A L. A. Sevastianov %A K. P. Lovetskiy %A D. S. Kulyabov %A S. V. Sergeev %T Numerical solution of first-order exact differential equations by the integrating factor method %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2024 %P 512-525 %V 24 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2024_24_4_a3/ %G en %F ISU_2024_24_4_a3
L. A. Sevastianov; K. P. Lovetskiy; D. S. Kulyabov; S. V. Sergeev. Numerical solution of first-order exact differential equations by the integrating factor method. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 24 (2024) no. 4, pp. 512-525. http://geodesic.mathdoc.fr/item/ISU_2024_24_4_a3/
[1] Polyanin A. D., Zaitsev V. F., Handbook of ordinary differential equations: Exact solutions, methods, and problems, Chapman Hall/CRC, New York, 2017, 1496 pp. | DOI
[2] Boas M. L., Mathematical methods in the physical sciences, John Wiley Sons, Inc., 2005, 864 pp.
[3] Soifer V. A., Kotlar V., Doskolovich L., Iteractive methods for diffractive optical elements computation, CRC Press, London, 2014, 244 pp. | DOI
[4] Doskolovich L. L., Kharitonov S. I., Petrova O. I., Soifer V. A., “A gradient method for design of multiorder varied-depth binary diffraction gratings”, Optics and Lasers in Engineering, 29:3–4 (1998), 249–259 | DOI
[5] Doskolovich L. L., Mingazov A. A., Bykov D. A., Andreev E. S., Bezus E. A., “Variational approach to calculation of light field eikonal function for illuminating a prescribed region”, Optics Express, 25:22 (2017), 26378–26392 | DOI
[6] Doskolovich L. L., Bykov D. A., Andreev E. S., Bezus E. A., Oliker V., “Designing double freeform surfaces for collimated beam shaping with optimal mass transportation and linear assignment problems”, Optics Express, 26:19 (2018), 24602–24613 | DOI
[7] Wu R., Xu L., Liu P., Zhang Y., Zheng Z., Li H., Liu X., “Freeform illumination design: A nonlinear boundary problem for the elliptic Monge – Ampere equation”, Optics Letters, 38:2 (2013), 229–231 | DOI
[8] Wu R., Benitez P., Zhang Y., Minano J. C., “Influence of the characteristics of a light source and target on the Monge – Ampere equation method in freeform optics design”, Optics Letters, 39:3 (2005), 634–637 | DOI
[9] Doskolovich L. L., Kazanskiy N. L., Kharitonov S. I., Perlo P., Bernard S., “Designing reflectors to generate a line-shaped directivity diagram”, Journal of Modern Optics, 52:11 (2005), 1529–1536 | DOI
[10] Doskolovich L. L., Kazanskiy N. L., Bernard S., “Designing a mirror to form a line-shaped directivity diagram”, Journal of Modern Optics, 54:4 (2007), 589–597 | DOI
[11] Doskolovich L. L., Andreev E. S., Moiseev M. A., “On optical surface reconstruction from a prescribed source-target mapping”, Computer Optics, 40:3 (2016), 338–345 (in Russian) | DOI
[12] Doskolovich L. L., Andreev E. S., Kharitonov S. I., Kazansky N. L., “Reconstruction of an optical surface from a given source-target map”, Journal of the Optical Society of America A, 33:8 (2016), 1504–1508 | DOI
[13] Sevastianov L. A., Lovetskiy K. P., Kulyabov D. S., “Multistage collocation pseudo-spectral method for the solution of the first order linear ODE.”, 2022 VIII International Conference on Information Technology and Nanotechnology (ITNT), Institute of Electrical Electronics Engineers Inc., Samara, Russian Federation, 2022, 1–6 | DOI
[14] Lovetskiy K. P., Kulyabov D. S., Hissein A. W., “Multistage pseudo-spectral method (method of collocations) for the approximate solution of an ordinary differential equation of the first order”, Discrete and Continuous Models and Applied Computational Science, 30:2 (2022), 127–138 | DOI
[15] Stewart G. W., Afternotes on numerical analysis, Society for Industrial and Applied Mathematics, Philadelphia, Pa, 1996, 200 pp. | DOI
[16] Amiraslani A., Corless R. M., Gunasingam M., “Differentiation matrices for univariate polynomials”, Numerical Algorithms, 83 (2020), 1–31 | DOI
[17] Fornberg B., A practical guide to pseudospectral methods, Cambridge University Press, 1996, 230 pp. | DOI
[18] Tenenbaum M., Pollard H., Ordinary differential equations, Dover Publications, Inc., Dover–New York, 1963, 818 pp.
[19] Mendes N., Chhay M., Berger J., Dutykh D., “Spectral methods”, Numerical methods for diffusion phenomena in building physics. A practical introduction, Springer, Cham, 2019, 167–209 | DOI