Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2024_24_4_a12, author = {I. A. Vorobyev}, title = {ML methods for assessing the risk of fraud in auto insurance}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {619--628}, publisher = {mathdoc}, volume = {24}, number = {4}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2024_24_4_a12/} }
TY - JOUR AU - I. A. Vorobyev TI - ML methods for assessing the risk of fraud in auto insurance JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2024 SP - 619 EP - 628 VL - 24 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2024_24_4_a12/ LA - ru ID - ISU_2024_24_4_a12 ER -
I. A. Vorobyev. ML methods for assessing the risk of fraud in auto insurance. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 24 (2024) no. 4, pp. 619-628. http://geodesic.mathdoc.fr/item/ISU_2024_24_4_a12/
[1] Bao Y., Hilary G., Ke B., “Artificial intelligence and fraud detection”, Innovative technology at the interface of finance and operations, Springer Series in Supply Chain Management, 11, eds. V. Babich, J. R. Birge, G. Hilary, Springer, Cham, 2022, 223–247 | DOI
[2] Subelj L., Furlan S., Bajec M., “An expert system for detecting automobile insurance fraud using social network analysis”, Expert Systems with Applications, 38:1 (2011), 1039–1052 | DOI
[3] Jin C., Feng Y., Li F., “Concept drift detection based on decision distribution in inconsistent information system”, Knowledge-Based Systems, 279 (2023), 110934 | DOI
[4] Gupta P., Varshney A., Khan M., Ahmed R., Shuaib M., Alam S., “Unbalanced credit card fraud detection data: A machine learning-oriented comparative study of balancing techniques”, Procedia Computer Science, 218 (2023), 2575–2584 | DOI
[5] Pant P., Srivastava P., “Cost-sensitive model evaluation approach for financial fraud detection system”, 2021 Second International Conference on Electronics and Sustainable Communication Systems (ICESC) (Coimbatore, India, 2021), 1606–1611 | DOI
[6] Voroncov K. V., “Mathematical methods of learning from precedents (the theory of machine learning)”, Machine Learning, course of lectures, 2011, 141 pp. (in Russian) (accessed September 22, 2023)
[7] Fawcett T., “An introduction to ROC analysis”, Pattern Recognition Letters, 27:8 (2006), 861–874 | DOI
[8] Subudhi S., Panigrahi S., “Use of optimized Fuzzy C-Means clustering and supervised classifiers for automobile insurance fraud detection”, Journal of King Saud University – Computer and Information Sciences, 32:5 (2020), 568–575 | DOI
[9] Phua C., Alahakoon D., “Minority report in fraud detection: Classification of skewed data”, ACM SIGKDD Explorations Newsletter, 6:1 (2004), 50–59 | DOI
[10] Itri B., Mohamed Y., Mohamed Q., Omar B., “Performance comparative study of machine learning algorithms for automobile insurance fraud detection”, 2019 Third International Conference on Intelligent Computing in Data Sciences (ICDS) (Marrakech, Moroko, 2019), 1–4 | DOI