Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2024_24_4_a10, author = {A. S. Smirnov and S. A. Bulov and E. A. Degilevich}, title = {Construction and analysis of nonlinear oscillation modes of a three-link pendulum by asymptotic methods}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {598--610}, publisher = {mathdoc}, volume = {24}, number = {4}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2024_24_4_a10/} }
TY - JOUR AU - A. S. Smirnov AU - S. A. Bulov AU - E. A. Degilevich TI - Construction and analysis of nonlinear oscillation modes of a three-link pendulum by asymptotic methods JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2024 SP - 598 EP - 610 VL - 24 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2024_24_4_a10/ LA - ru ID - ISU_2024_24_4_a10 ER -
%0 Journal Article %A A. S. Smirnov %A S. A. Bulov %A E. A. Degilevich %T Construction and analysis of nonlinear oscillation modes of a three-link pendulum by asymptotic methods %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2024 %P 598-610 %V 24 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2024_24_4_a10/ %G ru %F ISU_2024_24_4_a10
A. S. Smirnov; S. A. Bulov; E. A. Degilevich. Construction and analysis of nonlinear oscillation modes of a three-link pendulum by asymptotic methods. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 24 (2024) no. 4, pp. 598-610. http://geodesic.mathdoc.fr/item/ISU_2024_24_4_a10/
[1] Gribkov V. A., Khokhlov A. O., “Experimental study of inverted regulable pendulum stability”, Herald of the Bauman Moscow State Technical University. Series Natural Sciences, 2017, no. 2 (71), 22–39 (in Russian) | DOI
[2] Arkhipova I. M., “On stabilization of a triple inverted pendulum via vibration of a support point with an arbitrary frequency”, Vestnik of the St. Petersburg University: Mathematics, 52:2 (2019), 194–198 | DOI | DOI
[3] Jibril M., Tadese M., Tadese E. A., “Comparison of a triple inverted pendulum stabilization using optimal control technique”, Report and Opinion, 12:10 (2020), 62–70 | DOI
[4] Anan'evskii I. M., “The control of a three-link inverted pendulum near the equilibrium point”, Mechanics of Solids, 53, suppl. 1 (2018), S16–S21 | DOI
[5] Glück T., Eder A., Kugi A., “Swing-up control of a triple pendulum on a cart with experimental validation”, Automatica, 49:3 (2013), 801–808 | DOI
[6] Chen W., Theodomile N., “Simulation of a triple inverted pendulum based on fuzzy control”, World Journal of Engineering and Technology, 4:2 (2016), 267–272 | DOI
[7] Hussein M. T., “CAD design and control of triple inverted-pendulums system”, The Iraqi Journal for Mechanical and Materials Engineering, 18:3 (2018), 481–497 | DOI
[8] Huang X., Wen F., Wei Z., “Optimization of triple inverted pendulum control process based on motion vision”, EURASIP Journal on Image and Video Processing, 2018:73 (2018), 1–8 | DOI
[9] Ivanova A. I., “On the stability of the equilibrium position of a three-link pendulum under the action of a follower force”, Herald of the Bauman Moscow State Technical University. Series Natural Sciences, 2004, no. 3 (14), 19–26 (in Russian)
[10] Kovalchuk V., “Triple inverted pendulum with a follower force: Decomposition on the equations of perturbed motion”, Danish Scientific Journal, 2020, no. 36-2, 46–48
[11] Evdokimenko A. P., “Stability and branching of the relative equilibria of a three-link pendulum in a rapidly rotating frame of reference”, Journal of Applied Mathematics and Mechanics, 73:6 (2009), 648–663 | DOI
[12] Awrejcewicz J., Kudra G., Lamarque C.-H., “Investigation of triple pendulum with impacts using fundamental solution matrices”, International Journal of Bifurcation and Chaos, 14:2 (2004), 4191–4213 | DOI
[13] Smirnov A. S., Degilevich E. A., Oscillations of chain systems, Polytech-Press, St. Petersburg, 2021, 246 pp. (in Russian)
[14] Agarana M. C., Akinlabi E. T., “Mathematical modelling and analysis of human arm as a triple pendulum system using Euler – Lagragian model”, The 2nd International Conference on Engineering for Sustainable World (ICESW 2018) (9–13 July, 2018), IOP Conference Series: Materials Science and Engineering, 413, Mechanical Engineering Department, Covenant University, Ota, Nigeria, 2018, 012010 | DOI
[15] Novozhilov I. V., Terekhov A. V., Zabelin A. V., Levik Yu. S., Shlykov V. Yu., Kazennikov O. V., “Three-link mathematical model for the problem of stabilization of the vertical posture of a person”, Mathematical modeling of human movements in normal conditions and in some types of pathology, Moscow University Press, M., 2005, 7–20 (in Russian)
[16] Tyazhelov A. A., Kizilova N. N., Fischenko V. A., Yaremin S. Yu., Karpinsky M. Yu., Karpinskaya Ye. D., “Analysis of posturography based on mathematical model of human body as multilink system”, y, 13:4 (2012), 17–25 (in Russian)
[17] Loskutov Yu. V., Kudryavcev I. A., “Determination of the maximum torque in the knee drive of exoskeleton during “sit-to-stand” and “stand-to-sit” movement”, Vestnik of Volga State University of Technology. Series: Materials. Constructions. Technologies, 2018, no. 3 (7), 55–62 (in Russian)
[18] Smirnov A. S., Smolnikov B. A., “Resonance oscillations control of the non-linear mechanical systems based on the principles of biodynamics”, Mechanical Engineering and Engineering Education, 2017, no. 4 (53), 11–19 (in Russian)
[19] Bulov S. A., Smirnov A. S., “Control of the oscillation modes of a three-link pendulum”, Week of Science PhysMech, Collection of articles of the All-Russian Scientific Conference (St. Petersburg, April 04–09, 2022), Polytech-Press, St. Petersburg, 2022, 184–186 (in Russian)
[20] Smirnov A. S., Bulov S. A., Smolnikov B. A., “Numerical simulation of nonlinear oscillation modes of a three-link manipulator”, Modern Mechanical Engineering: Science and Education, Proceedings of the 12th International Scientific Conference (St. Petersburg, June 22, 2023), eds. Evgrafov A. N., Popovich A. A., Polytech-Press, St. Petersburg, 2023, 117–133 (in Russian)
[21] Bogolyubov N. N., Mitropol'skiy Yu. A., Asymptotic methods in the theory of nonlinear oscillations, GIFML, M., 1958, 408 pp. (in Russian)