Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2024_24_4_a10, author = {A. S. Smirnov and S. A. Bulov and E. A. Degilevich}, title = {Construction and analysis of nonlinear oscillation modes of a three-link pendulum by asymptotic methods}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {598--610}, publisher = {mathdoc}, volume = {24}, number = {4}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2024_24_4_a10/} }
TY - JOUR AU - A. S. Smirnov AU - S. A. Bulov AU - E. A. Degilevich TI - Construction and analysis of nonlinear oscillation modes of a three-link pendulum by asymptotic methods JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2024 SP - 598 EP - 610 VL - 24 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2024_24_4_a10/ LA - ru ID - ISU_2024_24_4_a10 ER -
%0 Journal Article %A A. S. Smirnov %A S. A. Bulov %A E. A. Degilevich %T Construction and analysis of nonlinear oscillation modes of a three-link pendulum by asymptotic methods %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2024 %P 598-610 %V 24 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2024_24_4_a10/ %G ru %F ISU_2024_24_4_a10
A. S. Smirnov; S. A. Bulov; E. A. Degilevich. Construction and analysis of nonlinear oscillation modes of a three-link pendulum by asymptotic methods. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 24 (2024) no. 4, pp. 598-610. http://geodesic.mathdoc.fr/item/ISU_2024_24_4_a10/