On recovering non-local perturbation of non-self-adjoint Sturm -- Liouville operator
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 24 (2024) no. 4, pp. 488-497.

Voir la notice de l'article provenant de la source Math-Net.Ru

Recently, there appeared a significant interest in inverse spectral problems for non-local operators arising in numerous applications. In the present work, we consider the operator with frozen argument $ly = -y''(x) + p(x)y(x) + q(x)y(a)$, which is a non-local perturbation of the non-self-adjoint Sturm – Liouville operator. We study the inverse problem of recovering the potential $q\in L_2(0, \pi)$ by the spectrum when the coefficient $p\in L_2(0, \pi)$ is known. While the previous works were focused only on the case $p=0$, here we investigate the more difficult non-self-adjoint case, which requires consideration of eigenvalues multiplicities. We develop an approach based on the relation between the characteristic function and the coefficients $\{ \xi_n\}_{n \ge 1}$ of the potential $q$ by a certain basis. We obtain necessary and sufficient conditions on the spectrum being asymptotic formulae of a special form. They yield that a part of the spectrum does not depend on $q$, i.e. it is uninformative. For the unique solvability of the inverse problem, one should supplement the spectrum with a part of the coefficients $ \xi_n$, being the minimal additional data. For the inverse problem by the spectrum and the additional data, we obtain a uniqueness theorem and an algorithm.
@article{ISU_2024_24_4_a1,
     author = {M. A. Kuznetsova},
     title = {On recovering non-local perturbation of non-self-adjoint {Sturm} -- {Liouville} operator},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {488--497},
     publisher = {mathdoc},
     volume = {24},
     number = {4},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ISU_2024_24_4_a1/}
}
TY  - JOUR
AU  - M. A. Kuznetsova
TI  - On recovering non-local perturbation of non-self-adjoint Sturm -- Liouville operator
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2024
SP  - 488
EP  - 497
VL  - 24
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2024_24_4_a1/
LA  - en
ID  - ISU_2024_24_4_a1
ER  - 
%0 Journal Article
%A M. A. Kuznetsova
%T On recovering non-local perturbation of non-self-adjoint Sturm -- Liouville operator
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2024
%P 488-497
%V 24
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2024_24_4_a1/
%G en
%F ISU_2024_24_4_a1
M. A. Kuznetsova. On recovering non-local perturbation of non-self-adjoint Sturm -- Liouville operator. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 24 (2024) no. 4, pp. 488-497. http://geodesic.mathdoc.fr/item/ISU_2024_24_4_a1/

[1] Borg G., “Eine Umkehrung der Sturm – Liouvilleschen eigenwertaufgabe: Bestimmung der differentialgleichung durch die eigenwerte”, Acta Mathematica, 78 (1946), 1–96 | DOI

[2] Russ. ed., Naukova dumka, Kiev, 1977, 329 pp. | DOI

[3] Russ. ed., Nauka, M., 1984, 240 pp. | DOI

[4] Freiling G., Yurko V. A., Inverse Sturm – Liouville problems and their applications, NOVA Science Publ., New York, 2001, 305 pp.

[5] Yurko V. A., Method of spectral mappings in the inverse problem theory, Inverse and Ill-posed Problems Series, VSP, Utrecht–Boston–Köln–Tokyo, 2002, 304 pp. | DOI

[6] Buterin S. A., “On an inverse spectral problem for a convolution integro-differential operator”, Results in Mathematics, 50 (2007), 173–181 | DOI

[7] Yurko V., “Inverse spectral problems for first order integro-differential operators”, Boundary Value Problems, 2017 (2017), 98 | DOI

[8] Yang C.-F., Yurko V., “On the determination of differential pencils with nonlocal conditions”, Journal of Inverse and Ill-posed Problems, 26:5 (2017), 577–588 | DOI

[9] Pikula M., Vladičić V., Vojvodić B., “Inverse spectral problems for Sturm – Liouville operators with a constant delay less than half the length of the interval and Robin boundary conditions”, Results in Mathematics, 74 (2019), 45 | DOI

[10] Djurić N., Buterin S., “On an open question in recovering Sturm – Liouville-type operators with delay”, Applied Mathematics Letters, 113 (2021), 106862 | DOI

[11] Buterin S. A., “Uniform full stability of recovering convolutional perturbation of the Sturm – Liouville operator from the spectrum”, Journal of Differential Equations, 282 (2021), 67–103 | DOI

[12] Bondarenko N. P., “Inverse problem for a differential operator on a star-shaped graph with nonlocal matching condition”, Boletín de la Sociedad Matemática Mexicana, 29 (2023), 2 | DOI

[13] Albeverio S., Hryniv R. O., Nizhnik L. P., “Inverse spectral problems for non-local Sturm – Liouville operators”, Inverse Problems, 23:2 (2007), 523 | DOI

[14] Nizhnik L. P., “Inverse nonlocal Sturm – Liouville problem”, Inverse Problems, 26:12 (2010), 125006 | DOI

[15] Bondarenko N. P., Buterin S. A., Vasiliev S. V., “An inverse spectral problem for Sturm – Liouville operators with frozen argument”, Journal of Mathematical Analysis and Applications, 472:1 (2019), 1028–1041 | DOI

[16] Buterin S. A., Vasiliev S. V., “On recovering a Sturm – Liouville-type operator with the frozen argument rationally proportioned to the interval length”, Journal of Inverse and Ill-posed Problems, 27:3 (2019), 429–438 | DOI

[17] Buterin S., Kuznetsova M., “On the inverse problem for Sturm – Liouville-type operators with frozen argument: Rational case”, Computational and Applied Mathematics, 39 (2020), 5 | DOI

[18] Wang Y.-P, Zhang M., Zhao W., Wei X., “Reconstruction for Sturm – Liouville operators with frozen argument for irrational cases”, Applied Mathematics Letters, 111 (2021), 106590 | DOI

[19] Buterin S., Hu Y.-T., “Inverse spectral problems for Hill-type operators with frozen argument”, Analysis and Mathematical Physics, 11 (2021), 75 | DOI

[20] Tsai T.-M., Liu H.-F., Buterin S., Chen L.-H, Shieh C.-T., “Sturm – Liouville-type operators with frozen argument and Chebyshev polynomials”, Mathematical Methods in the Applied Sciences, 45:16 (2022), 9635–9652 | DOI

[21] Kuznetsova M. A., “Inverse problem for the Sturm – Liouville operator with a frozen argument on the time scale”, Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 208, 2022, 49–62 (in Russian) | DOI

[22] Kuznetsova M., “Necessary and sufficient conditions for the spectra of the Sturm – Liouville operators with frozen argument”, Applied Mathematics Letters, 131 (2022), 108035 | DOI

[23] Dobosevych O., Hryniv R., “Reconstruction of differential operators with frozen argument”, Axioms, 11:1 (2022), 24 | DOI

[24] Bondarenko N. P., “Finite-difference approximation of the inverse Sturm – Liouville problem with frozen argument”, Applied Mathematics and Computation, 413 (2022), 126653 | DOI

[25] Kuznetsova M., “Uniform stability of recovering the Sturm – Liouville operators with frozen argument”, Results in Mathematics, 78:5 (2023), 169 pp. | DOI

[26] Kraal A. M., “The development of general differential and general differential-boundary systems”, The Rocky Mountain Journal of Mathematics, 5:4 (1975), 493–542 | DOI

[27] Lomov I. S., “Loaded differential operators: Convergence of spectral expansions”, Differential Equations, 50 (2014), 1070–1079 | DOI

[28] Lomov I. S., Spectral method of V. A. Ilyin. Non-self-adjoint operators, v. I, The operator of the second order. Basis and uniform convergence of spectral decompositions, MAKS Press, M., 2019, 132 pp. (in Russian)

[29] Feller W., “The parabolic differential equations and the associated semi-groups of transformations”, Annals of Mathematics, 55:3 (1952), 468–519 | DOI

[30] Feller W., “Diffusion processes in one dimension”, Transactions of the American Mathematical Society, 77 (1954), 1–31 | DOI

[31] Gordeziani N., “On some non-local problems of the theory of elasticity”, Bulletin of TICMI, 4 (2000), 43–46 (accessed April 28, 2023) https://emis.univie.ac.at//journals/TICMI/vol4/natogtic.ps

[32] Szymańska-Debowska K., “On the existence of solutions for nonlocal boundary value problems”, Georgian Mathematical Journal, 22:2 (2015), 273–279 | DOI

[33] Polyakov D. M., “Nonlocal perturbation of a periodic problem for a second-order differential operator”, Ordinary Differential Equations, 57:1 (2021), 11–18 | DOI

[34] Shkalikov A. A., “The completeness of eigenfunctions and associated functions of an ordinary differential operator with irregular-separated boundary conditions”, Functional Analysis and Its Applications, 10:4 (1976), 305–316 | DOI

[35] Naimark M. A., Linear differential operators, Fizmatlit, M., 2010, 528 pp. (in Russian)