Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2024_24_4_a1, author = {M. A. Kuznetsova}, title = {On recovering non-local perturbation of non-self-adjoint {Sturm} -- {Liouville} operator}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {488--497}, publisher = {mathdoc}, volume = {24}, number = {4}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ISU_2024_24_4_a1/} }
TY - JOUR AU - M. A. Kuznetsova TI - On recovering non-local perturbation of non-self-adjoint Sturm -- Liouville operator JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2024 SP - 488 EP - 497 VL - 24 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2024_24_4_a1/ LA - en ID - ISU_2024_24_4_a1 ER -
%0 Journal Article %A M. A. Kuznetsova %T On recovering non-local perturbation of non-self-adjoint Sturm -- Liouville operator %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2024 %P 488-497 %V 24 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2024_24_4_a1/ %G en %F ISU_2024_24_4_a1
M. A. Kuznetsova. On recovering non-local perturbation of non-self-adjoint Sturm -- Liouville operator. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 24 (2024) no. 4, pp. 488-497. http://geodesic.mathdoc.fr/item/ISU_2024_24_4_a1/
[1] Borg G., “Eine Umkehrung der Sturm – Liouvilleschen eigenwertaufgabe: Bestimmung der differentialgleichung durch die eigenwerte”, Acta Mathematica, 78 (1946), 1–96 | DOI
[2] Russ. ed., Naukova dumka, Kiev, 1977, 329 pp. | DOI
[3] Russ. ed., Nauka, M., 1984, 240 pp. | DOI
[4] Freiling G., Yurko V. A., Inverse Sturm – Liouville problems and their applications, NOVA Science Publ., New York, 2001, 305 pp.
[5] Yurko V. A., Method of spectral mappings in the inverse problem theory, Inverse and Ill-posed Problems Series, VSP, Utrecht–Boston–Köln–Tokyo, 2002, 304 pp. | DOI
[6] Buterin S. A., “On an inverse spectral problem for a convolution integro-differential operator”, Results in Mathematics, 50 (2007), 173–181 | DOI
[7] Yurko V., “Inverse spectral problems for first order integro-differential operators”, Boundary Value Problems, 2017 (2017), 98 | DOI
[8] Yang C.-F., Yurko V., “On the determination of differential pencils with nonlocal conditions”, Journal of Inverse and Ill-posed Problems, 26:5 (2017), 577–588 | DOI
[9] Pikula M., Vladičić V., Vojvodić B., “Inverse spectral problems for Sturm – Liouville operators with a constant delay less than half the length of the interval and Robin boundary conditions”, Results in Mathematics, 74 (2019), 45 | DOI
[10] Djurić N., Buterin S., “On an open question in recovering Sturm – Liouville-type operators with delay”, Applied Mathematics Letters, 113 (2021), 106862 | DOI
[11] Buterin S. A., “Uniform full stability of recovering convolutional perturbation of the Sturm – Liouville operator from the spectrum”, Journal of Differential Equations, 282 (2021), 67–103 | DOI
[12] Bondarenko N. P., “Inverse problem for a differential operator on a star-shaped graph with nonlocal matching condition”, Boletín de la Sociedad Matemática Mexicana, 29 (2023), 2 | DOI
[13] Albeverio S., Hryniv R. O., Nizhnik L. P., “Inverse spectral problems for non-local Sturm – Liouville operators”, Inverse Problems, 23:2 (2007), 523 | DOI
[14] Nizhnik L. P., “Inverse nonlocal Sturm – Liouville problem”, Inverse Problems, 26:12 (2010), 125006 | DOI
[15] Bondarenko N. P., Buterin S. A., Vasiliev S. V., “An inverse spectral problem for Sturm – Liouville operators with frozen argument”, Journal of Mathematical Analysis and Applications, 472:1 (2019), 1028–1041 | DOI
[16] Buterin S. A., Vasiliev S. V., “On recovering a Sturm – Liouville-type operator with the frozen argument rationally proportioned to the interval length”, Journal of Inverse and Ill-posed Problems, 27:3 (2019), 429–438 | DOI
[17] Buterin S., Kuznetsova M., “On the inverse problem for Sturm – Liouville-type operators with frozen argument: Rational case”, Computational and Applied Mathematics, 39 (2020), 5 | DOI
[18] Wang Y.-P, Zhang M., Zhao W., Wei X., “Reconstruction for Sturm – Liouville operators with frozen argument for irrational cases”, Applied Mathematics Letters, 111 (2021), 106590 | DOI
[19] Buterin S., Hu Y.-T., “Inverse spectral problems for Hill-type operators with frozen argument”, Analysis and Mathematical Physics, 11 (2021), 75 | DOI
[20] Tsai T.-M., Liu H.-F., Buterin S., Chen L.-H, Shieh C.-T., “Sturm – Liouville-type operators with frozen argument and Chebyshev polynomials”, Mathematical Methods in the Applied Sciences, 45:16 (2022), 9635–9652 | DOI
[21] Kuznetsova M. A., “Inverse problem for the Sturm – Liouville operator with a frozen argument on the time scale”, Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 208, 2022, 49–62 (in Russian) | DOI
[22] Kuznetsova M., “Necessary and sufficient conditions for the spectra of the Sturm – Liouville operators with frozen argument”, Applied Mathematics Letters, 131 (2022), 108035 | DOI
[23] Dobosevych O., Hryniv R., “Reconstruction of differential operators with frozen argument”, Axioms, 11:1 (2022), 24 | DOI
[24] Bondarenko N. P., “Finite-difference approximation of the inverse Sturm – Liouville problem with frozen argument”, Applied Mathematics and Computation, 413 (2022), 126653 | DOI
[25] Kuznetsova M., “Uniform stability of recovering the Sturm – Liouville operators with frozen argument”, Results in Mathematics, 78:5 (2023), 169 pp. | DOI
[26] Kraal A. M., “The development of general differential and general differential-boundary systems”, The Rocky Mountain Journal of Mathematics, 5:4 (1975), 493–542 | DOI
[27] Lomov I. S., “Loaded differential operators: Convergence of spectral expansions”, Differential Equations, 50 (2014), 1070–1079 | DOI
[28] Lomov I. S., Spectral method of V. A. Ilyin. Non-self-adjoint operators, v. I, The operator of the second order. Basis and uniform convergence of spectral decompositions, MAKS Press, M., 2019, 132 pp. (in Russian)
[29] Feller W., “The parabolic differential equations and the associated semi-groups of transformations”, Annals of Mathematics, 55:3 (1952), 468–519 | DOI
[30] Feller W., “Diffusion processes in one dimension”, Transactions of the American Mathematical Society, 77 (1954), 1–31 | DOI
[31] Gordeziani N., “On some non-local problems of the theory of elasticity”, Bulletin of TICMI, 4 (2000), 43–46 (accessed April 28, 2023) https://emis.univie.ac.at//journals/TICMI/vol4/natogtic.ps
[32] Szymańska-Debowska K., “On the existence of solutions for nonlocal boundary value problems”, Georgian Mathematical Journal, 22:2 (2015), 273–279 | DOI
[33] Polyakov D. M., “Nonlocal perturbation of a periodic problem for a second-order differential operator”, Ordinary Differential Equations, 57:1 (2021), 11–18 | DOI
[34] Shkalikov A. A., “The completeness of eigenfunctions and associated functions of an ordinary differential operator with irregular-separated boundary conditions”, Functional Analysis and Its Applications, 10:4 (1976), 305–316 | DOI
[35] Naimark M. A., Linear differential operators, Fizmatlit, M., 2010, 528 pp. (in Russian)