Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2024_24_4_a0, author = {Ivanov D.Yu.}, title = {Semi-analytical approximation of the normal derivative of the heat simple layer potential near the boundary of a two-dimensional domain}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {476--487}, publisher = {mathdoc}, volume = {24}, number = {4}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2024_24_4_a0/} }
TY - JOUR AU - Ivanov D.Yu. TI - Semi-analytical approximation of the normal derivative of the heat simple layer potential near the boundary of a two-dimensional domain JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2024 SP - 476 EP - 487 VL - 24 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2024_24_4_a0/ LA - ru ID - ISU_2024_24_4_a0 ER -
%0 Journal Article %A Ivanov D.Yu. %T Semi-analytical approximation of the normal derivative of the heat simple layer potential near the boundary of a two-dimensional domain %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2024 %P 476-487 %V 24 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2024_24_4_a0/ %G ru %F ISU_2024_24_4_a0
Ivanov D.Yu. Semi-analytical approximation of the normal derivative of the heat simple layer potential near the boundary of a two-dimensional domain. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 24 (2024) no. 4, pp. 476-487. http://geodesic.mathdoc.fr/item/ISU_2024_24_4_a0/
[1] Brebbia C. A., Telles J. C. F., Wrobel L. C., Boundary element techniques: Theory and applications in engineering, Springer-Verlag, Berlin, 1984, 464 pp. | DOI
[2] Smirnov V. I., A course of higher mathematics, pt. 2, v. 4, Nauka, M., 1981, 550 pp. (in Russian)
[3] Zhang Y.-M., Gu Y., Chen J.-T., “Stress analysis for multilayered coating systems using semianalytical BEM with geometric non-linearities”, Computational Mechanics, 47:5 (2011), 493–504 | DOI
[4] Gu Y., Chen W., Zhang B., Qu W., “Two general algorithms for nearly singular integrals in two dimensional anisotropic boundary element method”, Computational Mechanics, 53:6 (2014), 1223–1234 | DOI
[5] Niu Z., Cheng Ch., Zhou H., Hu Z., “Analytic formulations for calculating nearly singular integrals in two-dimensional BEM”, Engineering Analysis with Boundary Elements, 31:12 (2007), 949–964 | DOI
[6] Niu Z., Hu Z., Cheng Ch., Zhou H., “A novel semi-analytical algorithm of nearly singular integrals on higher order elements in two dimensional BEM”, Engineering Analysis with Boundary Elements, 61 (2015), 42–51 | DOI
[7] Ivanov D. Yu., “A refinement of the boundary element collocation method near the boundary of a two-dimensional domain using semianalytic approximation of the double layer heat potential”, Tomsk State University Journal of Mathematics and Mechanics, 2020, no. 65, 30–52 (in Russian) | DOI
[8] Dunford N., Schwartz J. T., Linear operators, v. 1, General theory, John Willey and Sons, Hoboken, 1988, 858 pp.
[9] Ivanov D. Yu., “A refinement of the boundary element collocation method near the boundary of domain in the case of two-dimensional problems of non-stationary heat conduction with boundary conditions of the second and third kind”, Tomsk State University Journal of Mathematics and Mechanics, 2019, no. 57, 5–25 (in Russian) | DOI
[10] Berezin I. S., Zhidkov N. P., Computing Methods, v. 1, Fizmatgiz, M., 1962, 464 pp. (in Russian)