Control of the rolling of a dynamically symmetrical sphere on an inclined rotating plane
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 24 (2024) no. 3, pp. 402-414.

Voir la notice de l'article provenant de la source Math-Net.Ru

The work investigates the rolling dynamics of a dynamically symmetrical heavy sphere (or a heavy spherical shell) along an inclined rough plane (platform) rotating with constant or periodic angular velocity around an axis, which is perpendicular to the plane and passing through some fixed point of this plane. Nonholonomic and holonomic constraints are imposed at the point of contact of the sphere with the reference plane. The equations of motion of the sphere are constructed. In the case of the constant angular velocity of the plane at any slope and in the case of the periodic angular velocity of the plane located horizontally the boundedness of the velocities of the geometric center of the sphere is proved. Moreover, in the case of the constant angular velocity of the plane, solutions are found analytically. Based on numerical integration, it is shown that for the periodic angular velocity of the plane and for the nonzero slope the square of the velocity vector of the geometric center of the sphere increases indefinitely. Two controls for the slope of the plane proportional to the projections of the velocity vector of the sphere on the coordinate axes lying in the reference plane are introduced. In the case of the constant angular velocity of the plane, a qualitative analysis of the equations of motion has been carried out, the control parameters at which the square of the velocity vector of the geometric center of the sphere will be bounded and at which it will be unbounded have been analytically found. The results of this control are presented for the case of periodic angular velocity of the plane. It is shown that by controlling the slope of the plane, it is possible to achieve the boundedness of the square of the velocity vector of the geometric center of the sphere. The obtained results are illustrated, the trajectories of the contact point and graphs of the desired mechanical parameters are constructed.
@article{ISU_2024_24_3_a7,
     author = {E. A. Mikishanina},
     title = {Control of the rolling of a dynamically symmetrical sphere on an inclined rotating plane},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {402--414},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2024_24_3_a7/}
}
TY  - JOUR
AU  - E. A. Mikishanina
TI  - Control of the rolling of a dynamically symmetrical sphere on an inclined rotating plane
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2024
SP  - 402
EP  - 414
VL  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2024_24_3_a7/
LA  - ru
ID  - ISU_2024_24_3_a7
ER  - 
%0 Journal Article
%A E. A. Mikishanina
%T Control of the rolling of a dynamically symmetrical sphere on an inclined rotating plane
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2024
%P 402-414
%V 24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2024_24_3_a7/
%G ru
%F ISU_2024_24_3_a7
E. A. Mikishanina. Control of the rolling of a dynamically symmetrical sphere on an inclined rotating plane. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 24 (2024) no. 3, pp. 402-414. http://geodesic.mathdoc.fr/item/ISU_2024_24_3_a7/

[1] S. A. Chaplygin, “O katanii shara po gorizontalnoi ploskosti”, Matematicheskii sbornik, 24:1 (1903), 139–168

[2] N. K. Moschuk, “O dvizhenii shara Chaplygina na gorizontalnoi ploskosti”, Prikladnaya matematika i mekhanika, 47:6 (1983), 916–921

[3] A. A. Kilin, “The dynamics of Chaplygin ball: The qualitative and computer analysis”, Regular and Chaotic Dynamics, 6:3 (2002), 291–306 | DOI | MR

[4] A. V. Borisov, A. A. Kilin, I. S. Mamaev, “Problema dreifa i vozvraschaemosti pri kachenii shara Chaplygina”, Nelineinaya dinamika, 9:4 (2013), 721–754

[5] E. A. Mikishanina, “Dynamics of the Chaplygin sphere with additional constraint”, Communications in Nonlinear Science and Numerical Simulation, 117 (2023), 106920 | DOI | MR | Zbl

[6] A. V. Borisov, E. A. Mikishanina, “Dynamics of the Chaplygin ball with variable parameters”, Russian Journal of Nonlinear Dynamics, 16:3 (2020), 453–462 | DOI | MR | Zbl

[7] A. V. Borisov, I. S. Mamaev, I. A. Bizyaev, “Ierarkhiya dinamiki pri kachenii tverdogo tela bez proskalzyvaniya i vercheniya po ploskosti i sfere”, Nelineinaya dinamika, 9:2 (2013), 141–202

[8] A. V. Borisov, I. S. Mamaev, “O dvizhenii shara Chaplygina po naklonnoi ploskosti”, Doklady Akademii nauk, 406:5 (2006), 620–623 | MR

[9] E. I. Kharlamova, “Kachenie shara po naklonnoi ploskosti”, Prikladnaya matematika i mekhanika, 22:4 (1958), 504–509 | Zbl

[10] I. A. Bizyaev, A. V. Borisov, I. S. Mamaev, “Dynamics of the Chaplygin ball on a rotating plane”, Russian Journal of Mathematical Physics, 25 (2018), 423–433 | DOI | MR | Zbl

[11] A. V. Borisov, A. A. Kilin, I. S. Mamaev, “Kak upravlyat sharom Chaplygina pri pomoschi rotorov”, Nelineinaya dinamika, 8:2 (2012), 289–307, OYPUBZ, EDN | MR

[12] S. Bolotin, “The problem of optimal control of a Chaplygin ball by internal rotors”, Regular and Chaotic Dynamics, 17:6 (2012), 559–570 | DOI | MR | Zbl

[13] A. V. Borisov, A. A. Kilin, I. S. Mamaev, “Dinamicheskie sistemy s neintegriruemymi svyazyami: vakonomnaya mekhanika, subrimanova geometriya i negolonomnaya mekhanika”, Uspekhi matematicheskikh nauk, 72:5 (2017), 3–62 | DOI | MR | Zbl

[14] A. V. Borisov, I. S. Mamaev, A. A. Kilin, I. A. Bizyaev, Izbrannye zadachi negolonomnoi mekhaniki, Institut kompyuternykh issledovanii, Izhevsk, 883 pp. | MR