Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2024_24_3_a6, author = {I. V. Kirillova}, title = {Hyperbolic boundary layer in the vicinity of the shear wave front in shells of revolution}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {394--401}, publisher = {mathdoc}, volume = {24}, number = {3}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2024_24_3_a6/} }
TY - JOUR AU - I. V. Kirillova TI - Hyperbolic boundary layer in the vicinity of the shear wave front in shells of revolution JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2024 SP - 394 EP - 401 VL - 24 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2024_24_3_a6/ LA - ru ID - ISU_2024_24_3_a6 ER -
%0 Journal Article %A I. V. Kirillova %T Hyperbolic boundary layer in the vicinity of the shear wave front in shells of revolution %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2024 %P 394-401 %V 24 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2024_24_3_a6/ %G ru %F ISU_2024_24_3_a6
I. V. Kirillova. Hyperbolic boundary layer in the vicinity of the shear wave front in shells of revolution. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 24 (2024) no. 3, pp. 394-401. http://geodesic.mathdoc.fr/item/ISU_2024_24_3_a6/
[1] U. K. Nigul, “Regions of effective application of the methods of three-dimensional and two-dimensional analysis of transient stress waves in shells and plates”, International Journal of Solids and Structures, 5:6 (1969), 607–627 | DOI | Zbl
[2] I. V. Kirillova, “Asimptoticheskaya teoriya giperbolicheskogo pogransloya v obolochkakh vrascheniya pri udarnykh tortsevykh vozdeistviyakh tangentsialnogo tipa”, Izvestiya Saratovskogo universi teta. Novaya seriya. Seriya: Matematika. Mekhanika. Informatika, 24:2 (2024), 222–230 | DOI
[3] I. V. Kirillova, L. Yu. Kossovich, “Dynamic boundary layer at nonstationary elastic wave propagation in thin shells of revolution”, AiM'96: Proceedings of the Second International conference «Asymptotics in mechanics» \date Saint Petersburg State Marine Technical University, Saint Petersburg, Russia, October 13-16, 1996, St/ Petersburg, 1997, 121–128
[4] I. V. Kirillova, Asimptoticheskii vyvod dvukh tipov priblizheniya dinamicheskikh uravnenii teorii uprugosti dlya tonkikh obolochek Saratov, dis. ... kand. fiz. mat. nauk, 1998, 122 pp.
[5] I. V. Kirillova, L. Yu. Kossovich, “Asimptoticheskaya teoriya volnovykh protsessov v obolochkakh vrascheniya pri udarnykh poverkhnostnykh i tortsevykh normalnykh vozdeistviyakh”, Izvestiya Rossiiskoi akademii nauk. Mekhanika tverdogo tela, 2022, no. 2, 35–49 | DOI | Zbl
[6] V. V. Novozhilov, L. I. Slepyan, “O printsipe Sen-Venana v dinamike sterzhnei”, Prikladnaya matematika i mekhanika, 29:2 (1965), 261–281 | Zbl
[7] L. I. Slepyan, Nestatsionarnye uprugie volny, Sudostroenie, L., 1972, 374 pp.
[8] Koul Dzh., Metody vozmuschenii v prikladnoi matematike Diesperova, ed. O. S. Ryzhov, Mir, M., 1972, 274 pp. | MR
[9] A. L. Goldenveizer, Teoriya uprugikh tonkikh obolochek, Nauka, M., 1976, 512 pp. | MR