Hyperbolic boundary layer in the vicinity of the shear wave front in shells of revolution
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 24 (2024) no. 3, pp. 394-401.

Voir la notice de l'article provenant de la source Math-Net.Ru

Hyperbolic boundary layer equations in thin shells of revolution are constructed in small vicinities of the shear wave fronts (taking into account its geometry) at edge shock loading of the normal type. Special coordinate system is used for defining the small boundary layer region. In this system, the coordinate lines defined by the normal to the middle surface are replaced by lines forming the surface of the shear wave front. The asymptotic model of the geometry of such a wave front suggests that these lines are formed by rotated normal to the middle surface. Asymptotically main components of considered stress strain state are defined: the normal displacement and the shear stress. The governing equation of this boundary layer is the hyperbolic equation of the second order with the variable coefficients for the normal displacement.
@article{ISU_2024_24_3_a6,
     author = {I. V. Kirillova},
     title = {Hyperbolic boundary layer in the vicinity of the shear wave front in shells of revolution},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {394--401},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2024_24_3_a6/}
}
TY  - JOUR
AU  - I. V. Kirillova
TI  - Hyperbolic boundary layer in the vicinity of the shear wave front in shells of revolution
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2024
SP  - 394
EP  - 401
VL  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2024_24_3_a6/
LA  - ru
ID  - ISU_2024_24_3_a6
ER  - 
%0 Journal Article
%A I. V. Kirillova
%T Hyperbolic boundary layer in the vicinity of the shear wave front in shells of revolution
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2024
%P 394-401
%V 24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2024_24_3_a6/
%G ru
%F ISU_2024_24_3_a6
I. V. Kirillova. Hyperbolic boundary layer in the vicinity of the shear wave front in shells of revolution. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 24 (2024) no. 3, pp. 394-401. http://geodesic.mathdoc.fr/item/ISU_2024_24_3_a6/

[1] U. K. Nigul, “Regions of effective application of the methods of three-dimensional and two-dimensional analysis of transient stress waves in shells and plates”, International Journal of Solids and Structures, 5:6 (1969), 607–627 | DOI | Zbl

[2] I. V. Kirillova, “Asimptoticheskaya teoriya giperbolicheskogo pogransloya v obolochkakh vrascheniya pri udarnykh tortsevykh vozdeistviyakh tangentsialnogo tipa”, Izvestiya Saratovskogo universi teta. Novaya seriya. Seriya: Matematika. Mekhanika. Informatika, 24:2 (2024), 222–230 | DOI

[3] I. V. Kirillova, L. Yu. Kossovich, “Dynamic boundary layer at nonstationary elastic wave propagation in thin shells of revolution”, AiM'96: Proceedings of the Second International conference «Asymptotics in mechanics» \date Saint Petersburg State Marine Technical University, Saint Petersburg, Russia, October 13-16, 1996, St/ Petersburg, 1997, 121–128

[4] I. V. Kirillova, Asimptoticheskii vyvod dvukh tipov priblizheniya dinamicheskikh uravnenii teorii uprugosti dlya tonkikh obolochek Saratov, dis. ... kand. fiz. mat. nauk, 1998, 122 pp.

[5] I. V. Kirillova, L. Yu. Kossovich, “Asimptoticheskaya teoriya volnovykh protsessov v obolochkakh vrascheniya pri udarnykh poverkhnostnykh i tortsevykh normalnykh vozdeistviyakh”, Izvestiya Rossiiskoi akademii nauk. Mekhanika tverdogo tela, 2022, no. 2, 35–49 | DOI | Zbl

[6] V. V. Novozhilov, L. I. Slepyan, “O printsipe Sen-Venana v dinamike sterzhnei”, Prikladnaya matematika i mekhanika, 29:2 (1965), 261–281 | Zbl

[7] L. I. Slepyan, Nestatsionarnye uprugie volny, Sudostroenie, L., 1972, 374 pp.

[8] Koul Dzh., Metody vozmuschenii v prikladnoi matematike Diesperova, ed. O. S. Ryzhov, Mir, M., 1972, 274 pp. | MR

[9] A. L. Goldenveizer, Teoriya uprugikh tonkikh obolochek, Nauka, M., 1976, 512 pp. | MR