Divergent series and generalized mixed problem for wave equation
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 24 (2024) no. 3, pp. 351-358.

Voir la notice de l'article provenant de la source Math-Net.Ru

Allowing the inversion of the operations of summation and integration for trigonometric Fourier series we present the solution by Fourier method of the generalized mixed problem for the homogeneous wave equation with zero initial velocity and fixed ends boundary conditions. The solution has the form of a series converging at an exponential rate. This series converges the classical solution if the latter equists. The results of the article reinforce the previously obtained results.
@article{ISU_2024_24_3_a3,
     author = {A. P. Khromov},
     title = {Divergent series and generalized mixed problem for wave equation},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {351--358},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2024_24_3_a3/}
}
TY  - JOUR
AU  - A. P. Khromov
TI  - Divergent series and generalized mixed problem for wave equation
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2024
SP  - 351
EP  - 358
VL  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2024_24_3_a3/
LA  - ru
ID  - ISU_2024_24_3_a3
ER  - 
%0 Journal Article
%A A. P. Khromov
%T Divergent series and generalized mixed problem for wave equation
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2024
%P 351-358
%V 24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2024_24_3_a3/
%G ru
%F ISU_2024_24_3_a3
A. P. Khromov. Divergent series and generalized mixed problem for wave equation. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 24 (2024) no. 3, pp. 351-358. http://geodesic.mathdoc.fr/item/ISU_2024_24_3_a3/

[1] V. A. Steklov, Osnovnye zadachi matematicheskoi fiziki, Nauka, M., 1983, 432 pp. | MR

[2] A. N. Krylov, O nekotorykh differentsialnykh uravneniyakh matematicheskoi fiziki, imeyuschikh prilozheniya v tekhnicheskikh voprosakh, GITTL, M.–L., 1950, 368 pp. | MR

[3] V. A. Chernyatin, Obosnovanie metoda Fure v smeshannoi zadache dlya uravnenii v chastnykh proizvodnykh, Izd-vo Moskovskogo un-ta, Moskva, 1991, 112 pp. | MR

[4] M. Sh. Burlutskaya, A. P. Khromov, “Rezolventnyi podkhod v metode Fure”, Doklady Akademii nauk, 458:2 (2014), 138–140 | DOI | MR | Zbl

[5] M. Sh. Burlutskaya, A. P. Khromov, “Rezolventnyi podkhod dlya volnovogo uravneniya”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 55:2 (2015), 51–63 | DOI | MR

[6] A. P. Khromov, V. V. Kornev, “Raskhodyaschiesya ryady v metode Fure dlya volnovogo uravneniya”, Trudy Instituta matematiki i mekhananiki UrO RAN, 27, no. 4, 2021, 215–238 | DOI

[7] Eiler L., Differentsialnoe ischislenie, GITTL., M.–L., 1949, 580 pp.

[8] A. P. Khromov, “O pochlennom integrirovanii trigonometricheskogo ryada Fure i teoreme Feiera Lebega”, Materialy XVI Mezhdunarodnoi Kazanskoi shkoly-konferentsii (Kazan, 22-27 avgusta 2023 g.), Trudy Matematicheskogo tsentra imeni N. I. Lobachevskogo, 66, Kazanskii (Privolzhskii) federalnyi un-t, Kazan, 2023, 261–262

[9] I. P. Natanson, Teoriya funktsii veschestvennoi peremennoi, GITTL, M.–L., 1957, 522 pp. | MR

[10] A. P. Khromov, “O pochlennom integrirovanii funktsionalnykh ryadov”, Sovremennye metody teorii kraevykh zadach, Pontryaginskie chteniya XXXIV, materialy mezhdunarodnoi Voronezh skoi vesennei matematicheskoi shkoly, posvyaschennoi 115-letiyu so dnya rozhdeniya akademika L. S. Pontryagina (Voronezh, 3-9 maya 2023 g.): Izd. dom VGU, Voronezh, 2023, 424–425

[11] A. P. Khromov, “Raskhodyaschiesya ryady i obobschennaya smeshannaya zadacha dlya volnovogo uravne niya prosteishego vida”, Izvestiya Saratovskogo universiteta. Novaya seriya. Seriya: Mate matika. Mekhanika. Informatika, 22:3 (2022), 322–331 | DOI | MR | Zbl

[12] A. P. Khromov, “Neobkhodimye i dostatochnye usloviya suschestvovaniya klassicheskogo resheniya smeshannoi zadachi dlya odnorodnogo volnovogo uravneniya v sluchae summiruemogo potentsiala”, Differentsialnye uravneniya, 55:5 (2019), 717–731 | DOI | Zbl