Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2024_24_3_a3, author = {A. P. Khromov}, title = {Divergent series and generalized mixed problem for wave equation}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {351--358}, publisher = {mathdoc}, volume = {24}, number = {3}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2024_24_3_a3/} }
TY - JOUR AU - A. P. Khromov TI - Divergent series and generalized mixed problem for wave equation JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2024 SP - 351 EP - 358 VL - 24 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2024_24_3_a3/ LA - ru ID - ISU_2024_24_3_a3 ER -
A. P. Khromov. Divergent series and generalized mixed problem for wave equation. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 24 (2024) no. 3, pp. 351-358. http://geodesic.mathdoc.fr/item/ISU_2024_24_3_a3/
[1] V. A. Steklov, Osnovnye zadachi matematicheskoi fiziki, Nauka, M., 1983, 432 pp. | MR
[2] A. N. Krylov, O nekotorykh differentsialnykh uravneniyakh matematicheskoi fiziki, imeyuschikh prilozheniya v tekhnicheskikh voprosakh, GITTL, M.–L., 1950, 368 pp. | MR
[3] V. A. Chernyatin, Obosnovanie metoda Fure v smeshannoi zadache dlya uravnenii v chastnykh proizvodnykh, Izd-vo Moskovskogo un-ta, Moskva, 1991, 112 pp. | MR
[4] M. Sh. Burlutskaya, A. P. Khromov, “Rezolventnyi podkhod v metode Fure”, Doklady Akademii nauk, 458:2 (2014), 138–140 | DOI | MR | Zbl
[5] M. Sh. Burlutskaya, A. P. Khromov, “Rezolventnyi podkhod dlya volnovogo uravneniya”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 55:2 (2015), 51–63 | DOI | MR
[6] A. P. Khromov, V. V. Kornev, “Raskhodyaschiesya ryady v metode Fure dlya volnovogo uravneniya”, Trudy Instituta matematiki i mekhananiki UrO RAN, 27, no. 4, 2021, 215–238 | DOI
[7] Eiler L., Differentsialnoe ischislenie, GITTL., M.–L., 1949, 580 pp.
[8] A. P. Khromov, “O pochlennom integrirovanii trigonometricheskogo ryada Fure i teoreme Feiera Lebega”, Materialy XVI Mezhdunarodnoi Kazanskoi shkoly-konferentsii (Kazan, 22-27 avgusta 2023 g.), Trudy Matematicheskogo tsentra imeni N. I. Lobachevskogo, 66, Kazanskii (Privolzhskii) federalnyi un-t, Kazan, 2023, 261–262
[9] I. P. Natanson, Teoriya funktsii veschestvennoi peremennoi, GITTL, M.–L., 1957, 522 pp. | MR
[10] A. P. Khromov, “O pochlennom integrirovanii funktsionalnykh ryadov”, Sovremennye metody teorii kraevykh zadach, Pontryaginskie chteniya XXXIV, materialy mezhdunarodnoi Voronezh skoi vesennei matematicheskoi shkoly, posvyaschennoi 115-letiyu so dnya rozhdeniya akademika L. S. Pontryagina (Voronezh, 3-9 maya 2023 g.): Izd. dom VGU, Voronezh, 2023, 424–425
[11] A. P. Khromov, “Raskhodyaschiesya ryady i obobschennaya smeshannaya zadacha dlya volnovogo uravne niya prosteishego vida”, Izvestiya Saratovskogo universiteta. Novaya seriya. Seriya: Mate matika. Mekhanika. Informatika, 22:3 (2022), 322–331 | DOI | MR | Zbl
[12] A. P. Khromov, “Neobkhodimye i dostatochnye usloviya suschestvovaniya klassicheskogo resheniya smeshannoi zadachi dlya odnorodnogo volnovogo uravneniya v sluchae summiruemogo potentsiala”, Differentsialnye uravneniya, 55:5 (2019), 717–731 | DOI | Zbl