Constructions of some secret sharing schemes based on linear codes
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 24 (2024) no. 3, pp. 330-341

Voir la notice de l'article provenant de la source Math-Net.Ru

There are perfect and ideal threshold secret sharing schemes, for example, Shamir’s secret sharing scheme. For the case of general secret sharing schemes with an arbitrary access structure, it is possible to construct a perfect scheme for any access structure (for example, the Ito – Saito – Nishizeki scheme, the Benaloh – Leichter scheme), but in general, such a scheme will not be an ideal secret sharing scheme. In the paper, for some classes of access structures, the construction of perfect and ideal secret sharing schemes based on linear codes is given. We also give a construction of perfect verifiable secret sharing schemes for any access structure for which there is a line code that implements this structure.
@article{ISU_2024_24_3_a1,
     author = {S. M. Ratseev},
     title = {Constructions of some secret sharing schemes based on linear codes},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {330--341},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2024_24_3_a1/}
}
TY  - JOUR
AU  - S. M. Ratseev
TI  - Constructions of some secret sharing schemes based on linear codes
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2024
SP  - 330
EP  - 341
VL  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2024_24_3_a1/
LA  - ru
ID  - ISU_2024_24_3_a1
ER  - 
%0 Journal Article
%A S. M. Ratseev
%T Constructions of some secret sharing schemes based on linear codes
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2024
%P 330-341
%V 24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2024_24_3_a1/
%G ru
%F ISU_2024_24_3_a1
S. M. Ratseev. Constructions of some secret sharing schemes based on linear codes. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 24 (2024) no. 3, pp. 330-341. http://geodesic.mathdoc.fr/item/ISU_2024_24_3_a1/